
AccMoS: Accelerating Model Simulation for Simulink via Code
Generation

Yifan Cheng
†
, Zehong Yu

‡
, Zhuo Su

‡
, Ting Chen

� †
, Xiaosong Zhang

� †
, Yu Jiang

‡
†
Center for Cybersecurity, University of Electronic Science and Technology of China, Chengdu, China

‡
KLISS, BNRist, School of Software, Tsinghua University, Beijing, China

ABSTRACT

Simulink has been widely used in embedded software development,

which supports simulation to validate the correctness of the con-

structed models. However, as the scale and complexity of models

in industrial applications grow, it is time-consuming for the sim-

ulation engine of Simulink to achieve high coverage and detect

potential errors, especially accumulative errors.

In this paper, we propose AccMoS, an accelerating model simula-

tion method for Simulink models via code generation. AccMoS gen-

erates simulation functionality code for Simulink models through

simulation oriented instrumentation, including runtime actor infor-

mation collection, coverage collection, and calculation diagnosis.

The final simulation code is constructed by composing all the in-

strumentation code with actor code generated from a predefined

template library and integrating test cases import. After compil-

ing and executing the code, AccMoS generates simulation results

including coverage and diagnostic information. We implemented

AccMoS and evaluated it on several benchmark Simulink mod-

els. Compared to Simulink’s simulation engine, AccMoS shows

a 215.3× improvement in simulation efficiency, significantly re-

duces the time required for detecting errors. AccMoS also achieved

greater coverage within equivalent time.

KEYWORDS

Model-driven design, model simulation, code generation

1 INTRODUCTION

Model-driven design is widely used in embedded scenarios [7, 17,

18], which uses modeling tools like Simulink [12] to facilitate em-

bedded software development. Although model-based development

releases developers from hard-coding tasks, potential errors may

occur in models and cause serious consequences, such as downcast

errors, wrap on overflow, cumulative errors [19], etc. Simulation

is a popular and powerful method to verify the correctness of the

models and eliminate potential errors. The simulation efficiency is

of vital importance, as it enables developers to discover potential

errors more promptly, especially cumulative errors.

Simulink, a part of Matlab [10], is extensively utilized for model-

ing and simulation of embedded systems. The simulation engine

of Simulink (SSE) allows for thorough verification and validation

of models. It can simulate the dynamic behaviors of the target sys-

tem step-by-step to identify logical errors, incorrect assumptions,

and unintended behaviors within the model. Moreover, it provides

runtime diagnostics to monitor the constructed model and detect

potential errors. For enhanced simulation efficiency, it supports fast

simulation modes, which optimizes simulation performance but

simultaneously restricts the capability of runtime diagnostics and

runtime information statistics.

Xiaosong Zhang and Ting Chen are the corresponding authors.

Motivation. However, SSE still falls in short to detect long-term

execution errors efficiently, which often emerge after extended

periods of operation. Such errors, when undetected, can lead to

gradually escalating inaccuracies or system failures, potentially

causing significant disruptions or damage. For example, consider

the sample model shown in Figure 1. This model essentially con-

ducts an accumulation operation on the two inputs, subsequently

combining the results to produce an output. This process leads to

an integer overflow error occurring at the Sum actor in yellow.

Using SSE, it takes 184.74s on average to detect the overflow

error. However, when we manually write responsible code in C++

for this model, this error can be identified in just 0.37s averagely.

This represents a speed improvement of nearly 500× compared to

the SSE. The discrepancy in performance arises from Simulink’s

utilization of an interpreted executionmethod for simulation, which

inherently results in slower simulation speeds. Hence, translating

the model into efficient code with necessary runtime detection can

substantially decrease the time required for simulation.

Figure 1: A sample model extracted from a large real world

model, which will overflow after long time simulation.

Challenges. To accelerate model simulation in Simulink through

code generation [15], we face the following two challenges. The first

challenge lies in discerning the necessary data for simulation. The

model of Simulink contains a vast amount of information, but not

all of it is essential for simulation purposes. We specifically aim to

identify the actor type and its operator for coverage analysis, while

also incorporating input/output signals for the diagnostic process.

Designing an effective method to extract these simulation-relevant

details from the model becomes crucial.

The second challenge involves analyzing the acquired data. Com-

prehensive simulation functionalities, such as error diagnosis and

coverage statistics, rely on the analysis of the collected data. How-

ever, the variations in actor type and its operator give rise to dif-

ferences in the methods employed for error diagnosis. It is also

difficult to implement coverage statistics at the model level in code.

Thus, an efficient approach is required to achieve differentiation in

implementing these two functionalities. Additionally, users often

have specific requirements for error diagnosis, necessitating the

design of a framework supporting customizing diagnostic methods.

Simulink
Model

Actor Info.
Collection

Coverage
Collection

Data Collection

Calculation
Diagnose

Data Diagnose

Custom Signal
Diagnose

Simulation Oriented Instrumentation

Model
Parser

Schedule
Convert

Model Preprocessing

Execution Order

Actor Info.

Coverage
Info.

Diagnose
Info.

Simulation ResultsSimulation Code Synthesis

Simulation Code
Composition

Test Cases
Import

Actor
Translation

Code
Template
Library

Instrumentation Code

Actor Code

Compile

Execute

Figure 2: An overview of the AccMoS framework. AccMoS contains three key steps. The Model Preprocessing step parses the

input Simulink model to collect information about the model’s structure, actors, and their execution order. The Simulation

Oriented Instrumentation step generates instrument code for data collection and diagnosis. The Simulation Code Synthesis

step combines actor code with the previously mentioned instrumented sections to produce the final simulation code.

To address the challenges mentioned above, we introduce Acc-

MoS, which accelerates model simulation for Simulink by translat-

ing the model into responsible code. AccMoS primarily comprises

three key steps. Firstly, AccMoS parses the input Simulinkmodel for

preparation, collecting the critical information, such as the model

structure, actors, and their execution order. Secondly, for each actor

requiring data collection or diagnosis, AccMoS generates corre-

sponding instrument code. After that, the actors generated in the

preprocessing stage are transformed into a code referencing actor

template library, and then combined with the instrumented sec-

tions to form the final simulation code. Finally, we import test cases,

compile and execute all the generated code to obtain diagnostic

results and coverage information.

We have implemented AccMoS and evaluated it on several

benchmark Simulink models. Experimental results show that com-

pared to SSE and its two fast simulation modes, the acceleration

ratio of AccMoS reached 215.3×, 76.32×, and 19.8×, respectively.
Since SSE cannot achieve error diagnosis and coverage collection

in fast simulation modes, we solely compared these two functional-

ities of AccMoS to SSE. The coverage attained by AccMoS within

equivalent time achieves substantial improvements. Also, AccMoS

makes remarkable progress, reducing of the error detection time.

2 RELATEDWORK

Model-driven design and Simulink. Model-driven design is a

software development method that has been widely used in safety-

critical embedded scenarios [4, 6, 8]. It emphasizes the use of high-

level modeling and simulation to understand, visualize, and analyze

the behavior of complex systems before implementation. Simulink,

developed by MathWorks, is widely used in engineering, partic-

ularly for designing embedded systems and developing control

algorithms. It facilitates embedded software development by sup-

porting simulation, verification, and code generation. Among them,

simulation is an effective method to verify the correctness of the

constructed models and discover potential errors.

Simulation acceleration. The simulation engine (SSE) is a core

part of Simulink, which enables users to execute and observe model

behavior over time. It evaluates the target system step-by-step to

detect logical errors, flawed assumptions, and unintended model

behaviors. It is highly accurate and allows for interactive parame-

ter tuning but can be slower for complex models. For simulation

efficiency, it supports two kinds of faster modes: Accelerator mode

(SSEac) and Rapid Accelerator mode (SSErac). SSEac accelerates ex-

ecution by compiling the model into an intermediate MEX file,

whereas SSErac entirely precompiles the model before simulation,

greatly enhancing processing speed. However, these modes face lim-

itations: frequent synchronization with Simulink and data transfer

requirements may hinder speed, and their reduced error detection

capabilities could compromise model accuracy and reliability. For

instance, SSErac cannot detect potential errors like wrap on over-

flow and downcast errors, and collect coverage information.

3 DESIGN

Figure 2 shows an overview of AccMoS, involving three main steps.

The first step is model preprocessing, aiming at obtaining actors’

information and their execution order from the input Simulink

model. It first parses the input model to retrieve information about

all the actors, and then it analyzes the execution order of all actors

using a data flow labeling method [14].

The second step is simulation oriented instrumentation, focus-

ing on generating instrumentation code for data collection and

diagnostic purposes. Based on the parsed actor information, the

data collection module generates code to collect runtime data of

actors, involving coverage information. The data diagnose module

performs diagnostic instrumentation through predefined template

library. Moreover, the custom signal diagnosis sub-module allows

for instrumenting user-defined diagnosis logic.

The last step is simulation code synthesis, forming the final

simulation code by combining actor code with their instrumented

code, as well as test cases importing code. Note that the actor code

is generated based on our predefined code template library. Finally,

after code compiling and executing, AccMoS obtains simulation

results, including coverage information and diagnose information.

3.1 Model Preprocessing

This step takes a Simulink model file as input, and extracts infor-

mation and the execution order of all the actors. The necessity for

utilizing two modules arises from the characteristics of the model

files. Simulink stores a model file in twomain parts, involving actors

and relationships. The former part contains only the fundamental

information of the model, encompassing the actor’s name, type,

calculation operator, and the quantity of input/output signals. Note

that in this part, all the actors are stored separately, with both the

I/O names and data types recorded as default values with no signal

connections. The relationship part stores all data flow directions,

connecting I/O signals in the model.

Since then, the model parser module analyzes the actor part

of the model file to gather basic information of each actor. As for

the schedule convert module, we employ a directed computation

graph to analyze the data flow of all signals. Then we obtain the

execution order of all actors through a topological sorting technique.

Meanwhile, the names and types of both input and output signals

associated with each actor are extracted.

3.2 Simulation Oriented Instrumentation

In order to ensure the correctness of the model, simulation needs to

detect whether errors occur in calculation actors. Additionally, to

evaluate the adequacy of the testing process, it is necessary to collect

coverage data in the simulation process. Since AccMoS carries out

code-based simulation, code instrumentation is apparently a more

suitable method to achieve these two functionalities.

Algorithm 1: Actor Code Instrumentation

Input: 𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 : Information of all actors

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟 : execution order of all actors

𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐿𝑖𝑠𝑡 : list of actors need information collection

𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝐿𝑖𝑠𝑡 : list of actors need diagnosis

Output: 𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑑𝑒 : Instrumented actor code

1 for 𝑎𝑐𝑡𝑜𝑟 in 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟 do

2 𝑐𝑜𝑑𝑒 = 𝑔𝑒𝑛𝐶𝑜𝑑𝑒𝐹𝑟𝑜𝑚𝑇𝑒𝑚𝑝 (𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟])
3 𝑑𝑖𝑎𝑔𝐶𝑜𝑑𝑒 = 𝑒𝑚𝑝𝑡𝑦𝑆𝑡𝑟𝑖𝑛𝑔

4 𝑐𝑜𝑑𝑒+ = 𝑔𝑒𝑛𝐴𝑐𝑡𝑜𝑟𝐶𝑜𝑣 (𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟])
5 if 𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟] .𝑖𝑠𝐵𝑟𝑎𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝑟 then

6 𝑐𝑜𝑑𝑒 = 𝑖𝑛𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐶𝑜𝑣 (𝑐𝑜𝑑𝑒)
7 if 𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟] .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝐿𝑜𝑔𝑖𝑐 then

8 𝑐𝑜𝑑𝑒 = 𝑖𝑛𝑠𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑜𝑣 (𝑐𝑜𝑑𝑒)
9 if 𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟] .𝑖𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then

10 𝑐𝑜𝑑𝑒 = 𝑖𝑛𝑠𝑡𝑀𝐶𝐷𝐶𝐶𝑜𝑣 (𝑐𝑜𝑑𝑒)
11 if 𝑎𝑐𝑡𝑜𝑟 in collectList then
12 𝑐𝑜𝑑𝑒+ = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝐹𝑢𝑛𝑐 (𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟])
13 if 𝑎𝑐𝑡𝑜𝑟 in diagnoseList then
14 𝑐𝑜𝑑𝑒+ = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝐹𝑢𝑛𝑐 (𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟])
15 𝑑𝑖𝑎𝑔𝐶𝑜𝑑𝑒 = 𝑔𝑒𝑛𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝐼𝑚𝑝𝑙 (𝑎𝑐𝑡𝑜𝑟𝐼𝑛𝑓 𝑜 [𝑎𝑐𝑡𝑜𝑟])
16 𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑑𝑒 [𝑎𝑐𝑡𝑜𝑟] .𝑐𝑜𝑑𝑒 = 𝑐𝑜𝑑𝑒

17 𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑑𝑒 [𝑎𝑐𝑡𝑜𝑟] .𝑑𝑖𝑎𝑔𝐶𝑜𝑑𝑒 = 𝑑𝑖𝑎𝑔𝐶𝑜𝑑𝑒

18 return 𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑑𝑒

The detailed process of code instrumentation is shown in Algo-

rithm 1. The main idea of this algorithm is to instrument data collec-

tion and diagnosis code for all actors in the model. The algorithm

initially traverses all actors in the order of execution, generating

basic actor code for each actor based on the code template library

(line 2). Afterward, the algorithm carries out relevant instrumen-

tation operations in accordance with the characteristics specified

in the actor information (lines 5-15). Note that the instrumented

code here just involves the function calls at specific locations, while

the actual implementation of these functions is defined elsewhere.

Actor information collection functions share standardized content

that can be implemented using predefined methods, as well as the

coverage collection functions. However, the content of diagnos-

tic functions varies based on the actor’s type and operator, thus

requiring a dynamically generated approach (line 15).

The following two sections provide detailed descriptions of the

data collection module and the data diagnosis module respectively.

A. Data Collection.
Actor Info Collection. The main purpose of collecting actor in-

formation is to perform calculation diagnosis and signal monitor

during simulation. In order to detect potential errors in calculation

actors, it is essential to gather runtime data from each calculation

actor in the model. Actor’s type information is certainly required to

discriminate calculation actors from the model. Additionally, diag-

nosis types vary depending on the type-operator combination of ac-

tors, making their operators necessary to be collected. Furthermore,

the names and types of actors’ input/output parameters are equally

needful, since both calculation diagnosis and signal monitor require

the runtime values of these parameters. Finally, to uniquely identify

a specific actor within the input Simulink model and its gathered

information, this module collects the actor’s path as the index key,

which is composed of the model file name, subsystem name, and

the actor’s own name, for example, MODEL_SUBSYSTEM_ADD2.
Figure 3 illustrates the declaration of an instrumented signal

monitor function. It records the output value of the actor with three

parameters, including the path of the outport, the address of its

value, the corresponding data type, and the data length. All collected

output values will be stored in the outputData data structure, which
serves as a repository for result output at the conclusion of the

simulation.

1 void diagnose_Model_Minus(i32 out, i32 in1, i32 in2) {
2 if((in1 > 0 && in2 < 0 && out < 0) || (in1 < 0 && in2 > 0 && out > 0))
3 printf("WARRING: Wrap on overflow occur on Model_Minus!\n");
4 if(sizeof(out) < sizeof(in1) || sizeof(out) < sizeof(in2))
5 printf("WARRING: Downcast may exist on Model_Minus!\n");
6 ...
7 }

1 void outputCollect(string path, char* data, string type, int length) {
2 outputData* OD = new outputData();
3 OD‐>path = path;
4 OD‐>dataType =type;
5 memcpy(OD‐>data, data, size(type) * length);
6 ...
7 }

Figure 3: An instrumented function for signal monitor.

Coverage Collection. A primary purpose of simulation is to as-

sess the coverage of models. Coverage metrics help developers to

gain deeper understanding of models’ status and validate that test

cases are comprehensive enough to cover different parts of models.

Simulink provides four main coverage metrics [13], involving ac-

tor coverage, condition coverage, decision coverage, and modified

condition/decision coverage (MC/DC). As a code-based simulation

tool, AccMoS utilizes a bitmap for each metric to record runtime

coverage information, which is used for coverage statistics during

simulation. AccMoS attaches the instrumentation method to gather

coverage information corresponding to the four coverage metrics.

(a) Actor Coverage indicates whether various actors in themodel

have been executed. We add coverage statistics code at the

end of each actor, for example, actorBitmap[actorID]=1.
(b) Condition Coverage measures the executing rate beyond all

the branches in the model. Conditional expressions appear in

branching actors, e.g., if, switch, which determines different

paths of simulation. Our method inserts coverage collection

code into all executable branches.

(c) Decision Coverage determines the percentage of the total

number of decision outcomes the code exercises during simu-

lation. Decision points are typically associated with the actors

including Boolean statements, representing different outcome

values. We instrument all possible values of all the Boolean

statements to collect this metric.

(d) ModifiedCondition/DecisionCoverage (MC/DC) analyzes

whether the conditions within a decision independently affect

the decision outcome during execution. We place the instru-

mentation code to gather the number of conditions evaluated

to all possible outcomes that impact the output of a decision.

After simulation, we divide the collected values by the total

number of conditions within all decisions to obtain MC/DC.

B. Data Diagnose.
Calculation Diagnose. Another primary purpose of simulation

is to diagnose models for discovering various types of potential

errors. Such errors are often related to computational issues that

arise from the model’s structure or inputs, normally appearing in

calculation actors. AccMoS is capable of diagnosing all types of

calculation errors supported by SSE in default, including warp on

overflow, array out of bounds, division by zero, precision loss, etc.

For different error types, we have developed a distinct diagnostic

code and packaged them into corresponding template library. For

the same error type, the instrumented diagnostic code is almost the

same. Note that, the type and number of diagnoses vary depending

on the actor type and its operator. For example, a "Product" actor

with the "/" operator needs to diagnose division by zero errors.

Conversely, when this actor uses the "*" operator, this diagnosing

becomes unnecessary.

Figure 4 shows a part of the declaration of a diagnostic function,

which exams a Sum type actor named "Minus" has the operator "-"

with its runtime input/output values. Line 2 represents the diagnos-

tic logic of detecting warp on overflow, followed by the parameter

downcast diagnosis in line 4. When an error is triggered, corre-

sponding diagnostic information will be outputted (line 3 and 5).

1 void diagnose_Model_Minus(i32 out, i32 in1, i32 in2) {
2 if((in1 > 0 && in2 < 0 && out < 0) || (in1 < 0 && in2 > 0 && out > 0))
3 printf("WARRING: Wrap on overflow occur on Model_Minus!\n");
4 if(sizeof(out) < sizeof(in1) || sizeof(out) < sizeof(in2))
5 printf("WARRING: Downcast may exist on Model_Minus!\n");
6 ...
7 }

1 void outputCollect(string path, char* dataAddr, string dataType) {
2 outputData* OD = new outputData();
3 OD->path = path;
4 OD->dataType = dataType;
5 memcpy(OD->data, dataAddr, sizeof(dataType));
6 ...
7 }

Figure 4: A generated diagnostic function.

CustomSignalDiagnose. Sometimes userswant to checkwhether

the input/output of a certain actor meets their expectations, but

a deviation from expectations does not necessarily indicate an er-

ror. In such cases, the template-based diagnosis method provided

by AccMoS may not be effectively suited to handle this situation.

Since then, AccMoS allows users to customize signal diagnosis,

implementing their own diagnostic logic by defining callback func-

tions. For example, detecting sudden signal changes, monitoring

the output value of a specified actor, etc.

3.3 Simulation Code Synthesis

Actor Translation. Since actors of the same type share similar

code, we predefine a code template library for commonly used actor

types to generate the corresponding code. Notably, the same type

of actors may have different detailed information, resulting in dif-

ferences in the generated code. For instance, the code generated for

Math actor varies depending on the operator it takes, e.g., exp or log.
Consequently, AccMoS needs to configure such actor information

to obtain the required code precisely. After that, according to the

execution order, the generated code of actors is synthesized to form

the mainbody code of the model.

Simulation Code Composition. In this module, the instrumen-

tation code generated by the former step is inserted into the cor-

responding positions within each actor. Since the entire execution

logic of the model is composed, AccMoS encapsulates it within a

model system function, exemplified in the second part of Figure 5.

Then AccMoS generates a main function to implement the simu-

lation loop, where the model system function is invoked to carry

1 int main(int argc, char* argv[]) {
2 TestCase_Init(); Model_Init();
3 // Simulation Loop of model
4 for(int step = 0; step < TOTAL_STEP; step++) {
5 int Inport_A = takeTestCase();
6 int Inport_B = takeTestCase();
7 int Outport;
8 Model_Exe(Inport_A, Inport_B, &Outport);
9 recordResult();

10 }
11 outputResult();
12 }

1 Code of main function

1 void Model_Exe(int Inport_A, int Inport_B, int* Outport) {
2 int Minus_Out;
3 //Calculate code of Sum type actor "Model.Minus"
4 Minus_Out = Inport_A ‐ Inport_B;
5 actorBitmap[0] = 1;
6 outputCollect("Model_Minus_out", (u8*)(&Minus_Out), "i32", 1);
7 diagnose_Model_Minus(Minus_Out, Inport_A, Inport_B);
8 ...
9 }

2 Code of model system function

Figure 5: A sample of simulation code.

out the simulation process. An illustrative example of a main func-

tion is shown in the first part of Figure 5. In addition, in order to

import test cases, the main function initializes them (line 2) before

simulation and acquires the corresponding values for each input

port during the simulation loop. Moreover, the code responsible for

outputting simulation results (including diagnostic and coverage

information) is placed at the end of the main function (line 11).

3.4 Implementation

AccMoS
1
is implemented in C++ with 36,528 lines of code. In the

model preprocessing phase, the Simulink model undergoes parsing

into an XML file, facilitating the generation of instrumentation

code and actor code by providing actor information. To enhance

diagnostic capabilities during simulation, we have meticulously

developed a diagnostic code template library encompassing all error

types that Simulink defaults to enable. Furthermore, specialized

code template libraries have been crafted for over fifty commonly

used actors, ensuring a streamlined and efficient process of code

generation for Simulink models.

4 EVALUATION

To validate AccMoS, we conducted a comparative analysis against

SSE with 10 Simulink benchmark models. All experiments were

executed in a consistent environment (Windows 11, Intel i7-13700F

CPU, 32GB RAM). Each data point represents the average of five

experiment runs, ensuring the reliability and stability of the results.

For comparison on error diagnosis and coverage collection, we

solely compared AccMoS with SSE, as SSEac and SSErac cannot

perform error diagnosis and coverage collection. As shown in Table

1, all benchmark models are derived from industry and deployed in

embedded scenarios. The simulation code was compiled by a C/C++

Compiler (GCC 8.1.0), employing -O3 optimization flag.

Evaluation on Simulation Time. A comparative analysis was

carried out to evaluate the simulation times of AccMoS, SSE and

SSErac on benchmark models. To meet the industrial requirements

of long-term execution and stability tests, the simulations were con-

ducted with a significant step size of 50 million. The results shown

in Table 2 illustrate that AccMoS achieves significant performance

1
The implementation of AccMoS and benchmark models are available at the anony-

mous website: https://anonymous.4open.science/r/AccMoS-C0CC.

https://anonymous.4open.science/r/AccMoS-C0CC

improvement. Compared to SSE, SSEac and SSErac, AccMoS dis-

played an average efficiency improvement of 215.3×, 76.32× and

19.8×, respectively.

Table 1: The description of benchmark models

Model Functionality #Actor #SubSystem

CPUT AutoSAR CPU task dispatch system 275 27

CSEV Charging system of electric vehicle 152 17

FMTM Factory Multi-point Temperature Monitor 276 42

LANS LAN Switch controller 570 39

LEDLC LED light controller 170 31

RAC Robotic arm controller 667 57

SPV Solar PV panel output control 131 16

TCP TCP three-way handshake protocol 330 42

TWC Train wheel speed controller 214 13

UTPC Underwater thruster power control 214 21

We observe that the acceleration ratios of four models, namely

LANS, LEDC, SVP, and TCP, are significantly higher than other

models, compared with SSE. By conducting an in-depth analysis

of these model structures, we found that they contain more com-

putational actors than other models. The interpretative execution

method of SSE requires a substantial amount of time to process

computational logic. However, for code-based simulation methods,

including AccMoS and SSErac, the code for computational opera-

tions benefits from compiler optimizations and processor features

like pipelining and superscalar architectures, enabling faster simu-

lation. On the other hand, code generated from control logic actors,

which includes conditional statements, is less amenable to such

optimizations by compilers or processors. Consequently, higher

acceleration ratios are achieved in these models.

Table 2: Comparison of simulation time

Model AccMoS SSE SSEac SSErac

Improvement

SSE SSEac SSErac

CPUT 4.21s 167.67s 69.55s 37.41s 39.8× 16.5× 8.9×
CSEV 0.77s 75.06s 43.97s 35.58s 97.5× 57.1× 46.2×
FMTM 2.42s 70.61s 58.31s 32.80s 29.2× 24.1× 13.6×
LANS 3.61s 1603.21s 536.81s 99.96s 444.1× 148.7× 27.7×
LEDLC 4.31s 1688.20s 512.75s 48.66s 391.7× 119.0× 11.3×
RAC 3.45s 108.99s 70.77s 48.35s 31.6× 20.5× 14.0×
SPV 1.67s 934.88s 375.66s 34.60s 559.8× 224.9× 20.7×
TCP 2.09s 768.05s 158.26s 46.15s 367.5× 75.7× 22.1×
TWC 2.05s 182.27s 76.22s 41.34s 88.9× 37.2× 20.2×
UTPC 10.88s 1120.77s 430.06s 140.38s 103.0× 39.5× 12.9×

While SSEac employs a strategy of compiling models into MEX

files to reduce the interpretive execution overhead, thus boost-

ing simulation efficiency, it still relies on interpretive execution

for simulations. Consequently, AccMoS significantly outperforms

SSEac in terms of simulation efficiency. As for SSErac, it precom-

piles the target model and employs code-based simulation method

to accelerate the simulation efficiency. However, its performance

is still constrained by the need for frequent synchronization and

data transfer with Simulink, which poses a limitation to achieving

optimal simulation efficiency.

Effectiveness of Coverage Collection.We conducted a compara-

tive analysis between AccMoS and SSE, with equivalent test cases

generated through a random approach. The evaluation specifically

centered on comparing the coverage achieved by both methodolo-

gies within a consistent simulation time frame. Coverage metrics,

including actor, condition, decision, and MC/DC, were systemati-

cally recorded at simulation intervals of 5s, 15s, and 60s. Detailed

results are presented in Table 3.

Coverage metrics are essential in model-driven development,

helping developers gain a deeper understanding of the model’s

execution status and validating the comprehensiveness of tests.

Attaining high coverage more quickly further aids developers in ef-

ficiently analyzing the model. Our experiments indicate that within

just 5 seconds, all 4 coverage metrics achieved by AccMoS sur-

pass 60 seconds of SSE simulation, for all models apart from the

TCP model. As for TCP, after a very brief 15-second simulation, its

coverage comprehensively surpassed the results obtained through

simulation on SSE. AccMoS demonstrates significant efficiency

improvement in coverage collection.

Table 3: Coverage of AccMoS and SSE

Model

Time

(s)

Actor Condition Decision MC/DC

AccMoS SSE AccMoS SSE AccMoS SSE AccMoS SSE

CPUT

5 32% 9% 50% 13% 53% 14% 33% 7%

15 43% 20% 76% 28% 78% 30% 64% 15%

60 52% 20% 52% 28% 93% 30% 93% 15%

CSEV

5 46% 46% 70% 63% 69% 64% 45% 33%

15 46% 46% 73% 63% 71% 64% 50% 33%

60 46% 46% 73% 66% 71% 67% 50% 38%

FMTM

5 37% 2% 49% 3% 48% 2% 25% 0%

15 45% 10% 60% 10% 57% 10% 31% 2%

60 45% 10% 62% 10% 59% 10% 36% 2%

LANS

5 45% 18% 62% 27% 60% 27% 37% 18%

15 45% 45% 62% 60% 60% 58% 37% 34%

60 45% 45% 65% 60% 62% 58% 42% 34%

LEDLC

5 51% 31% 83% 40% 82% 42% 59% 27%

15 51% 31% 84% 43% 84% 45% 62% 35%

60 51% 31% 85% 43% 85% 46% 64% 39%

RAC

5 43% 2% 59% 3% 55% 2% 32% 0%

15 43% 10% 60% 11% 57% 10% 35% 2%

60 44% 25% 62% 30% 59% 29% 38% 12%

SPV

5 49% 44% 84% 63% 83% 63% 68% 40%

15 49% 44% 84% 73% 83% 72% 68% 56%

60 49% 44% 84% 73% 83% 72% 68% 56%

TCP

5 40% 23% 65% 25% 65% 24% 58% 10%

15 40% 24% 65% 26% 65% 25% 58% 13%

60 40% 37% 65% 58% 65% 58% 58% 50%

TWC

5 38% 21% 59% 36% 55% 32% 41% 16%

15 38% 21% 59% 36% 55% 32% 41% 18%

60 53% 38% 99% 56% 99% 52% 98% 36%

UTPC

5 38% 20% 58% 22% 57% 19% 37% 1%

15 38% 38% 58% 55% 57% 53% 37% 28%

60 38% 38% 61% 57% 59% 55% 43% 34%

Error Diagnosis Case Study. To demonstrate the AccMoS’s capa-

bility of error detection, we manually inject errors into the CSEV

model. CSEV represents an charging system of electric vehicles. It

supports various modes of charging and offers different charging

powers. This system has a data-store memory actor quantity, which
represents global variable in code, to record the quantity of charged

electricity, with the data type being int.

Specifically, two specific errors are intentionally injected in the

CSEV model. The first error is a wrap on overflow in the quantity
variable. This error arises during ongoing simulations, which repre-

sents the electric vehicle’s continuous charging process. As a result,

the value of quantity progressively increases, eventually exceeding

the maximum limit of an integer, thus leading to an overflow. To

detect this error, AccMoS employs the diagnosis code to moni-

tor the add actor before quantity, using the following condition:

if(input1 > 0 && input2 > 0 && output < 0).

The second error involves a wrap on overfllow in the calcula-

tion of charging power. CSEV, depending on the charging mode,

offers varied charging powers. It first retrieves the rated voltage

and current based on the selected charging mode, and then em-

ploys a product actor to determine the charging power. However,

a discrepancy arises as the output data type of this product actor

is short int, differing from the int data type of voltage and current,

resulting in a wrap on overfllow error. To identify this error, Acc-

MoS employs the sizeof() function to determine the data sizes of

both the inputs and outputs in the product calculation. A wrap on

overfllow error is indicated if these sizes do not align.

The first wrap on overflow is detected by AccMoS in just 0.74s

of simulation, reducing over 99% of detection time, compared to

450.14s taken by SSE. This significant improvement shows the

effectiveness of AccMoS. As for the second error, it manifests at

the beginning of the simulation. Consequently, the difference in

detection times is minimal, ranging between 0.18s and 1.2s.

5 DISCUSSION

Threats to validity. At present, AccMoS mainly supports code-

based simulation for discrete models, but a key limitation of Ac-

cMoS is its current lack of capability in supporting continuous

models [5, 11]. In contrast to discrete models, which experience

changes at specific intervals, continuous models represent varia-

tions occurring continuously over any given time frame. Expanding

AccMoS to encompass both discrete and continuous models would

significantly enhance its versatility and utility. To support code-

based simulation of continuous models, AccMoS could integrate

numerical solvers, such as Adams solver [2], to effectively resolve

differential equations inherent in these continuous models.

Extensibility of AccMoS.AccMoS currently focuses on accelerat-

ing the simulation process of Simulink models. Generally, there are

other well-known model-driven tools, also widely used in embed-

ded software development, such as Ptolemy-II, SCADE, and Tsmart

[1, 3, 9]. To support code-based simulation for these tools, AccMoS

must be capable of parsing their unique model representations and

then generating the corresponding simulation code. One possible

way to address this problem is to build a well-structured interme-

diate representation (IR) that ensures compatibility with various

model-driven design tools. Additionally, to further enhance simu-

lation efficiency, AccMoS could explore leveraging optimization

techniques used by other code generators [16, 20].

6 CONCLUSION

In this paper, we have presented AccMoS, a novel approach to accel-

erate model simulation for Simulink through automated code gen-

eration. AccMoS works by first preprocessing the given Simulink

model, and then generating instrumentation code for simulation

functionality. The final code is then synthesized by integrating this

instrumentation code with the actor code generated from templates,

as well as test cases importing code. Through code-based simula-

tion, AccMoS rapidly produces results containing coverage and

diagnostic information.

We implemented AccMoS and evaluated it on several bench-

mark Simulink models. The results demonstrate that compared to

SSE, AccMoS achieves a substantial simulation accelerating ratio

up to 215.3×, significantly reducing the time required for error

diagnosing, as well as remarkable coverage collection ability. In

the future, we plan to extend AccMoS’s capabilities for supporting

continuous models and other modeling environments.

7 ACKNOWLEDGMENT

This research is sponsored in part by the China Postdocoral Sci-

ence Foundation (BX20230183, 2023M731954), the NSFC (U2336204,

62332004, 62372263, 92167101, 62021002), the National Key Research

and Development Project (2022YFB3104000), and the Sichuan Natu-

ral Science Foundation Project (24ZNSFSC0038).

REFERENCES

[1] Gérard Berry. 2007. SCADE: Synchronous design and validation of embedded

control software. In Next Generation Design and Verification Methodologies for
Distributed Embedded Control Systems. Springer, 19–33.

[2] Tomas Brezina, Zdenek Hadas, and Jan Vetiska. 2011. Using of Co-simulation

ADAMS-SIMULINK for development of mechatronic systems. In 14th Interna-
tional Conference Mechatronika. IEEE, 59–64.

[3] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. 2002.

Ptolemy: A Framework for Simulating and Prototyping Heterogeneous Systems.

In Readings in Hardware/Software Co-Design, Giovanni De Micheli, Rolf Ernst,

and Wayne Wolf (Eds.). Morgan Kaufmann, San Francisco, 527–543.

[4] Peter H Feiler. 2010. Model-based validation of safety-critical embedded systems.

In 2010 IEEE Aerospace Conference. IEEE, 1–10.
[5] W Michael Hanemann. 1984. Discrete/continuous models of consumer demand.

Econometrica: Journal of the Econometric Society (1984), 541–561.

[6] Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Torngren. 2004.

SaveCCM-a component model for safety-critical real-time systems. In Proceedings.
30th Euromicro Conference, 2004. IEEE, 627–635.

[7] David Hästbacka, Timo Vepsäläinen, and Seppo Kuikka. 2011. Model-driven

development of industrial process control applications. Journal of Systems and
Software 84, 7 (2011), 1100–1113.

[8] Yu Jiang, Han Liu, Houbing Song, Hui Kong, Rui Wang, Yong Guan, and Lui

Sha. 2018. Safety-assured model-driven design of the multifunction vehicle bus

controller. IEEE Transactions on Intelligent Transportation Systems 19, 10 (2018),
3320–3333.

[9] Yu Jiang, Hehua Zhang, Huafeng Zhang, Xinyan Zhao, Han Liu, Chengnian Sun,

Xiaoyu Song, Ming Gu, and Jiaguang Sun. 2014. Tsmart-galsblock: A toolkit

for modeling, validation, and synthesis of multi-clocked embedded systems. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 711–714.

[10] Mathworks. 2023. MATLAB. (2023). https://www.mathworks.com/help/matlab/

index.html.

[11] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.

Automated test suite generation for time-continuous simulink models. In pro-
ceedings of the 38th International Conference on Software Engineering. 595–606.

[12] Simulink and Matlab. 2023. Simulink Documentation. (2023). https://www.

mathworks.com/help/simulink/index.html.

[13] Simulink and Matlab. 2023. Simulink Model Coverage Document. (2023). https:

//www.mathworks.com/help/slcoverage/ug/model-coverage.html.

[14] Zhuo Su, Dongyan Wang, Yixiao Yang, Yu Jiang, Wanli Chang, Liming Fang, Wen

Li, and Jiaguang Sun. 2021. Code synthesis for dataflow-based embedded software

design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 1 (2021), 49–61.

[15] Zhuo Su, Dongyan Wang, Yixiao Yang, Zehong Yu, Wanli Chang, Wen Li, Aiguo

Cui, Yu Jiang, and Jiaguang Sun. 2021. MDD: A unified model-driven design

framework for embedded control software. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 10 (2021), 3252–3265.

[16] Zhuo Su, Zehong Yu, Dongyan Wang, Yixiao Yang, Yu Jiang, Rui Wang, Wanli

Chang, and Jiaguang Sun. 2022. HCG: Optimizing embedded code generation of

Simulink with SIMD instruction synthesis. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 1033–1038.

[17] Kleanthis Thramboulidis, D Perdikis, and S Kantas. 2007. Model driven develop-

ment of distributed control applications. The International Journal of Advanced
Manufacturing Technology 33 (2007), 233–242.

[18] Gabriele Trombetti, Aniruddha Gokhale, Douglas C Schmidt, Jesse Greenwald,

John Hatcliff, Georg Jung, and Gurdip Singh. 2005. An integrated model-driven

development environment for composing and validating distributed real-time

and embedded systems. Model-Driven Software Development (2005), 329–361.
[19] Eric-Jan Wagenmakers, Peter Grünwald, and Mark Steyvers. 2006. Accumulative

prediction error and the selection of time series models. Journal of Mathematical
Psychology 50, 2 (2006), 149–166.

[20] Zehong Yu, Zhuo Su, Yixiao Yang, Jie Liang, Yu Jiang, Aiguo Cui, Wanli Chang,

and Rui Wang. 2022. Mercury: Instruction Pipeline Aware Code Generation

for Simulink Models. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 41, 11 (2022), 4504–4515.

https://www.mathworks.com/help/matlab/index.html
https://www.mathworks.com/help/matlab/index.html
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/slcoverage/ug/model-coverage.html
https://www.mathworks.com/help/slcoverage/ug/model-coverage.html

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Model Preprocessing
	3.2 Simulation Oriented Instrumentation
	3.3 Simulation Code Synthesis
	3.4 Implementation

	4 Evaluation
	5 Discussion
	6 Conclusion
	7 Acknowledgment
	References

