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ABSTRACT

Simulink has emerged as the fundamental infrastructure that sup-
ports modeling, simulation, verification, and code generation for
embedded software development. To improve the performance of
the code generated from Simulink models, state-of-the-art code gen-
erators employ various optimization techniques, such as expression
folding, variable reuse, and parallelism. However, they overlook the
presence of redundant calculations within data-intensive models
widely used to perform substantial data processing in embedded
scenarios, which can significantly undermine the efficiency and
performance of the generated code.

This paper proposes Frodo, an efficient code generator for data-
intensive Simulink models via redundancy elimination. Frodo first
conducts model analysis to construct the dataflow graph and derive
the I/O mapping of each block. Then, for each block within the
dataflow graph, Frodo recursively determines its calculation range
by leveraging the I/O mapping of its subsequent blocks. After that,
Frodo generates concise code for optimizable blocks in accordance
with the precise calculation range. We implemented and evaluated
Frodo on benchmark Simulink models. Compared with the state-of-
the-art code generators Simulink Embedded Coder, DFSynth, and
HCG, the code generated by Frodo is 1.17× - 8.55× faster in terms
of execution duration across different compilers and architectures,
without incurring additional overhead of memory usage.
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1 INTRODUCTION

Simulink [14] has emerged as the fundamental infrastructure in
embedded scenarios [2, 3, 6], which provides blocks to build the
model that represents the target system. Based on the constructed
model, Simulink supports model-based simulation, verification,
and code generation to accelerate the development of embedded
software. Code generation, as a crucial step in model-driven design,
can generate the deployable source code for the target Simulink
model, thus saving significant labor efforts and receiving major
adoption in embedded software development.

Many research and commercial code generators have contributed
to generating high-efficiency embedded code. One of the most
commonly used commercial tools is Simulink Embedded Coder [13].
Based on the user-constructed model, it can generate deployable
code and supports various optimization options, such as expression
folding and variable reuse. Academic works also have made efforts
to improve code efficiency. DFSynth [15] specializes in optimizing
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complex branch blocks inside Simulink models. It decomposes the
target model into blocks wrapped by control statements and designs
well-structured templates for code synthesis. HCG [17] tries to
accelerate the execution of time-consuming blocks with the model.
It first discovers the parallel computation in the model and then
synthesizes SIMD instructions for enhancing performance.

Although the aforementioned tools have shown promising re-
sults in various scenarios, they still exhibit limitations in generating
code for data-intensive Simulink models. Data-intensive models,
which accept arrays as inputs and perform extensive calculations
on them, are prevalent in realistic embedded scenarios, including
but not limited to real-time DSP systems and electric drives sys-
tems [4, 11, 12]. These models are related to loop statements in
the deployed code, which are time-consuming and make up the
majority of the computational overhead but are overlooked by ex-
isting generators that are mainly adept at accelerating individual
statements within the generated code.
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1 void convolution(double Inport1[50], double Inport2[10], 
2     double Outport[50])
3 {
4    ...  
5  for (i = 0; i < 59; i++) {
6  // boundary judgement
7      if (i - 49 >= 0) {
8  j = i - 49;
9  } else {
10 j = 0;
11 }
12 if (i <= 9) {
13 jEnd = i;
14 } else {
15 jEnd = 9;
16 }
17
18 acc = Inport1[i - j] * Inport2[j];
19 for (j++; j <= jEnd; j++) {
20 acc += Inport1[i - j] * Inport2[j];
21 }
22
23 Convolution[out] = acc;
24 out++;
25 }
26 
27   // assign the result to ‘Outport’
29 memcpy(&Outport[0], &Convolution[5], 50U * sizeof(double));
30 }

1 // pad the input array with zero
2 void convolution(double Inport1[68], double Inport2[10],
3 double Outport[50])
4  {
5    ...  
6  for (i = 5; i < 54; i++) {
7      // avoid boundary judgement
8  acc = 0;
9  for (j = 0; j <= 9; j++) {
10 acc += Inport1[i+j] * Inport2[9-j];
11 }
12     // assign the result to ‘Outport’ directly
13 Outport[i-5] = acc;
14 }
15 }

(59)
(50)

(10) (2)

(50)

void convolution(double Inport1[68], double Inport2[10], double Outport[50]) {
...
// The range should be 5 to 54, rather than 0 to 59
for (i = 0; i < 59; i++) {

acc = 0;
for (j = 0; j<= 9; j++)

acc += Inport1[i+j] * Inport2[9-j]; 
Convolution[out++] = acc;

}
// Assign the result to ‘Outport’, rather than a local variable
memcpy(&Outport[0], &Convolution[5], 50U * sizeof(double));

}

(a) Convolution Model

(b) Generated Code
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Figure 1: A sample model to illustrate the motivation of our

work. The green part represents the code generated from

the Convolution block; The orange part represents the code

generated from the Selector block.

Specifically, within the data-intensive Simulink models, data-
truncation blocks are often utilized to select specific data segments
for further calculations, such as Selector block and Pad block. For
example, consider a Convolution model which performs the same
convolution [5] on the input data, as shown in Figure 1. The same
convolution is a type of convolution where the output data is of the
same dimension as the input data; however, the implementation
of Simulink for Convolution block is full padding which increases
the output size, as shown in the code highlighted in green. There-
fore, a Selector block is needed to select the part of Convolution
block’s output that represents the same convolution as shown in the
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code highlighted in orange, resulting in unnecessary calculations.
Unfortunately, all state-of-the-art code generators neglect this im-
pact on code generation. In other words, they first translate the
Convolution block as full padding and then translate the Selector
block to select the same convolution part as output, compromising
the efficiency of the embedded software. Moreover, considering the
constrained performance capabilities of embedded devices, such in-
efficiency is particularly problematic and deemed unacceptable [10].

To generate efficient code for data-intensive models by eliminat-
ing inherently redundant calculations, we have to deal with the
following two challenges: 1 The first challenge involves accurately
identifying the optimizable blocks influenced by data-truncation
blocks. Simulink blocks within the model are interconnected, and
indirectly connected blocks can also influence each other. There-
fore, when identifying optimizable blocks, it is essential to consider
not only the ones directly connected to the data-truncation blocks
but also those indirectly connected. 2 The second challenge in-
volves accurately eliminating the redundant calculations within
the optimizable blocks. For optimization, it is of vital importance
to ensure both efficiency and correctness. A loose elimination re-
tains numerous time-consuming calculations for execution, leading
to under-optimization. Conversely, an excessive elimination may
yield pronounced performance improvement but at the cost of
omitting crucial calculations, resulting in incorrect code. Therefore,
an in-depth analysis of data interaction among blocks should be
conducted to figure out the precise elimination range.

To address the above challenges, we propose Frodo, an efficient
code generator for data-intensive Simulink models via redundancy
elimination. Firstly, Frodo extracts essential details from the target
Simulink model, including blocks and connections. Based on the
collected information, Frodo constructs the dataflow graph and
derives the I/O (input-output) mapping of each block. Secondly,
for each block within the dataflow graph, Frodo recursively de-
termines its calculation range by leveraging the I/O mapping of
its subsequent blocks. After that, Frodo generates concise code
for optimizable blocks in accordance with the accurate calculation
range. This code is then cooperated with the code generated from
other basic blocks, yielding high-efficiency code for deployment.

We implement and evaluate the effectiveness of Frodo on bench-
mark Simulink models [15, 18], across different compilers and ar-
chitectures. The results illustrate that Frodo gains pronounced
performance improvement. Compared with the state-of-the-art
code generators Simulink Embedded Coder, DFSynth, and HCG,
the code generated by Frodo is 1.26× - 8.55×, 1.32× - 5.75×, and
1.17× - 3.75× faster in terms of execution duration, without incur-
ring additional overhead of memory usage.

2 BACKGROUND AND RELATEDWORK

Model-driven design has emerged as a widely adopted approach in
the embedded systems domain, offering a systematic and structured
method for designing complex systems [1, 7–9]. This approach
usually encompasses four critical stages: model construction, model
simulation, model verification, and code generation. Each stage
serves a unique purpose and contributes to the overall efficiency
and effectiveness of the model-driven design process.

Code generation is a crucial part of model-driven design, which
releases the developers from error-prone coding tasks and accel-
erates software development. It primarily consists of four essen-
tial steps to generate code [16]. 1 Model parse, as a preparation
stage, analyzes the target model to collect the critical informa-
tion for further usages, such as the model structure and blocks. 2
Dataflow analysis derives the sequential relationship and connectiv-
ity between blocks. 3 Scheduling infers the translation sequence of
model blocks, based on the sequential relationship. 4 Code synthe-
sis generates corresponding code for each block, and then assembles
them into deployable code according to the translation sequence.

Recently, many research and commercial tools have made re-
markable efforts to improve the performance of the generated code.
Specifically, the built-in Simulink Embedded Coder [13] special-
izes in generating production-quality code by employing various
high-level optimization techniques, including expression folding,
variable reuse, etc. DFSynth [15] disassembles the dataflow model
into blocks embeddedwithin if-else or switch-case statements based
on schedule analysis, effectively bridging the semantic gap between
the code and the original dataflow model. HGC [17] accelerates the
generated code by selecting optimal implementations for intensive
computing blocks and synthesizing appropriate SIMD instructions
for batch computing blocks. Mercury [18] prioritizes adjusting the
code translation order and avoiding instruction pipeline stalls.

Main Difference. Frodo differs from these works by utiliz-
ing model semantics to avoid time-consuming redundant calcula-
tions. Frodo proactively conducts model analysis to construct the
dataflow graph and derive the I/O mapping of each block. Then,
based on the gathered information, Frodo recursively determines
the precise calculation range of each block. For optimizable blocks,
Frodo generates streamlined code following the eliminated calcu-
lation range, thereby eliminating the redundant calculations.

3 DESIGN

Frodo mainly contains two key components: Model Analysis and
Redundancy Elimination, as shown in Figure 2. 1 Firstly, Frodo
parses the target model to collect critical information, including
blocks, connections, etc. Then, based on the connections and block
property library, Frodo constructs the dataflow graph and derives
the I/O mapping of each block. 2 Secondly, for each block within
the dataflow graph, Frodo recursively determines its calculation
range by leveraging the I/O mapping of its subsequent blocks. After
that, Frodo utilizes the element-level code library to generate con-
cise code for optimizable blocks. This code is then synthesized with
code generated from other blocks, yielding high-efficiency code.

3.1 Model Analysis

Model Parse. Frodo implements a customized parser to extract
critical model information from the target Simulink model. Specif-
ically, the Simulink model is wrapped by a ZIP file that contains
different components, including model structure, parameters, and
other properties. These components are recorded in the XML files.
Frodo interprets these files to parse the dataflow information, such
as blocks and connections. Besides, for Subsystem blocks within the
model, Frodo flattens them, and maps their inports and outports
to the corresponding external blocks for further analysis.
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Dataflow Graph Construction. Frodo first constructs the
dataflow graph. For each block, Frodo defines the appropriate
runtime data structure to preserve critical contents, such as inputs
and outputs. For connections, Frodo records both the source block
and the destination block. Notably, it is vital to identify the output of
the source block and the input of the destination block, as different
ports can have distinct functionalities and mismatched ports can
result in incorrect code.

I/OMappingDerivation. To determine the accurate calculation
range for generating concise code, it is essential to figure out the
I/O mapping of each block, i.e., to ascertain the range of input data
required to produce the desired output. To accomplish this, Frodo
begins by crafting a specialized block property library tailored to the
block type and parameters. This library encapsulates critical details
such as type, parameters, and mapping. Notably, even for actors
of the same type, the contained mapping can vary depending on
the specific parameters. For instance, consider the Selector block
property shown in Figure 3(a). The value, Start-End means that
the Selector block selects the data from the start index to the end
index. However, if the value Start-End is changed to IndexPort
which means that the Selector block selects the data based on
the value of index port, the contained mapping should undergo
a change. Therefore, Frodo must extract the corresponding I/O
mapping from the block property library based on the type and
parameter of the target block. The extracted I/O mapping signi-
fies the relationship between a single output datum and the input
data. Frodo should extend this relationship to include each output
element. For example, consider the I/O mapping of the Selector
block shown in Figure 3(b). In the Selector block, the value of
‘U’ indicates the data source, and the value of ‘Idx’ indicates the
start index and end index of the selected data. Therefore, the start
position value of ‘O’ corresponds to the 5th datum of the ‘U’, and
the end position value of ‘O’ corresponds to the 54th datum of ‘U’,
i.e., 𝑂 [0] = 𝑈 [5],𝑂 [49] = 𝑈 [54]. Extending this relationship to
the remaining data, Frodo constructs a comprehensive I/O map-
ping for the Selector block. Leveraging this derived I/O mapping,
redundant calculations can be effectively identified and eliminated.

3.2 Redundancy Elimination

Simulink supports data-truncation blocks for modeling purposes,
including but not limited to Selector, Pad, and Submatrix. These
blocks are utilized to select specific segments of input data for
subsequent calculations. However, if the unselected data segments
do not factor into subsequent calculations, any previous calculations
involving those segments can be considered redundant.

Calculation Range Determination. Leveraging the obtained
dataflow graph and I/O mappings, Frodo employs a recursive
method to identify and eliminate the redundant calculations men-
tioned above. Algorithm 1 presents the overall procedure of calcu-
lation range determination. The main idea of this algorithm is to
initially determine the calculation range of the child blocks, which
are then employed to determine the calculation range of their par-
ent blocks. First, Frodo traverses the dataflow graph to identify
the root blocks and records them for further usage (lines 2-7). The
root block is defined as the 0-in-degree block in the dataflow graph.
Since these blocks provide the source data for all calculations, de-
termining their precise calculation range is crucial for eliminating

redundant calculations. For each block, Frodo defines a map called
𝑟𝑎𝑛𝑔𝑒 to record the calculation range, which is initially set to be an
empty set (line 8). Then, Frodo invokes the recursive function to
determine the precise calculation range of root blocks, as well as
their subsequent blocks (lines 9-11). After that, Frodo identifies the
blocks whose calculation ranges have been modified as optimizable
blocks and generates streamlined code for them.

Algorithm 1: Calculation Range Determination
Input: 𝑔𝑟𝑎𝑝ℎ: Dataflow graph of the target model

𝑚𝑎𝑝𝑝𝑖𝑛𝑔 : I/O mapping of each block
Output: 𝑟𝑎𝑛𝑔𝑒 : Calculation range of each block

1 Function rangeDetermine(𝑔𝑟𝑎𝑝ℎ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔):
2 𝑟𝑜𝑜𝑡𝑠 ← ∅ // root blocks

3 for 𝑏𝑙𝑜𝑐𝑘 in 𝑔𝑟𝑎𝑝ℎ do

4 if 𝑏𝑙𝑜𝑐𝑘 is root then
5 𝑟𝑜𝑜𝑡𝑠.append(𝑏𝑙𝑜𝑐𝑘)

6 end

7 end

8 𝑟𝑎𝑛𝑔𝑒 ← ∅
9 for 𝑏𝑙𝑜𝑐𝑘 in 𝑟𝑜𝑜𝑡𝑠 do

10 recursive(𝑔𝑟𝑎𝑝ℎ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔,𝑟𝑎𝑛𝑔𝑒,𝑏𝑙𝑜𝑐𝑘)

11 end

12 return 𝑟𝑎𝑛𝑔𝑒

13 End Function

14 Function recursive(𝑔𝑟𝑎𝑝ℎ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝑟𝑎𝑛𝑔𝑒 , 𝑏𝑙𝑜𝑐𝑘):
15 𝑏𝑐 ← 𝑔𝑟𝑎𝑝ℎ[𝑏𝑙𝑜𝑐𝑘 ] .𝑐ℎ𝑖𝑙𝑑 // child blocks

16 if 𝑏𝑐 = ∅ then

17 𝑟𝑎𝑛𝑔𝑒 [𝑏𝑙𝑜𝑐𝑘 ] ←𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑏𝑙𝑜𝑐𝑘.𝑜𝑢𝑡𝑝𝑢𝑡 ]
18 end

19 else

20 𝑟𝑜 ← ∅ // output range

21 for 𝑐ℎ𝑖𝑙𝑑 in 𝑏𝑐 do

22 recursive(𝑔𝑟𝑎𝑝ℎ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔,𝑟𝑎𝑛𝑔𝑒,𝑐ℎ𝑖𝑙𝑑)

23 𝑟𝑜 ← 𝑟𝑜 ∪ 𝑟𝑎𝑛𝑔𝑒 [𝑐ℎ𝑖𝑙𝑑 ]
24 end

25 𝑟𝑎𝑛𝑔𝑒 [𝑏𝑙𝑜𝑐𝑘 ] ←𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑟0 ]
26 end

27 End Function

The procedure of recursive function is represented in lines
14-27 in Algorithm 1. First, Frodo searches the dataflow graph
to obtain child blocks of 𝑏𝑙𝑜𝑐𝑘 . If 𝑏𝑐 = ∅, it represents that 𝑏𝑙𝑜𝑐𝑘
has no child blocks. Based on the I/O mapping and the output
range of 𝑏𝑙𝑜𝑐𝑘 , Frodo derives the input ranges and assigns them
to the respective entry in 𝑟𝑎𝑛𝑔𝑒𝑠 (lines 16-18). Conversely, if 𝑏𝑐 ≠

∅, Frodo must consider the influence of the child blocks. To do
this, Frodo first defines a variable called 𝑟𝑜 to store the output
range of 𝑏𝑙𝑜𝑐𝑘 (line 20). Then, for each child block, Frodo invokes
the recursive function to drive the ranges of their inputs (line
22). Note that, for a connection between the source block and the
destination block, the data of the source block’s output is equal
to the data of the destination block’s input. Therefore, Frodo can
merge the corresponding input range of the child blocks to derive
the accurate output range of 𝑏𝑙𝑜𝑐𝑘 (line 23). Subsequently, Frodo
determines the precise calculation range (line 25).

Concise Code Generation. For optimizable blocks, Frodo first
obtains a suitable code snippet for replacement from the element-
level code library, according to the calculation range. Then, Frodo
replaces the placeholders in the selected code snippet with the ac-
tual values according to the block parameters. Take Figure 4 as
an example, which displays an element-level code library of the
Convolution block. The snippet 1 is utilized to generate code
for individual elements, while the snippet 2 is utilized to gener-
ate code for consecutive elements. Depending on the calculation
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Figure 2: An overall framework of Frodo. Model Analysis is mainly used as a pre-processing step to extract critical information

from the target model for subsequent optimization. Based on the gathered information, Redundancy Elimination is utilized to

eliminate redundant calculations to improve performance.

<Actor Name="Const" Type="Constant">
<Output Name="#Output1" Type="#Default"/>
<Parameter Name="Value" Value="[5 54]"/>

</Actor>
...
<Connection>
<Src Src="Convolution.#Output1"/>
<Dst Dst="Selector.#U"/>

</Connection>
...
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<Input Name="#U" Type="#Default"/>
<Input Name="#Idx" Type="#Default"/>
<Output Name="#Y" Type="#Default"/>
<Parameter Name="IndexOptions" Value="Start-End"/>
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Actor Type: Convolution

int size = $Input2_size$;
float Conv_acc = 0;
for (int i = 0; i <= size; i++) {

Conv_acc += $Input1$[$Index$ + i] * $Input2$[size-i];
}
$Name_Output$[$Index$] = Conv_acc;

int size = $Input2_size$;
for (int i = $Start$; i < $End$; i += $Interval$)
{

float Conv_acc = 0;
for (int j = 0; j <= size; j++) {

Conv_acc += $Input1$[i + j] * $Input2$[size-j];
}
$Name_Output$[i] = Conv_acc;

}
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$Name_Output$[$Index$] = Conv_acc;
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float Conv_acc = 0;
for (int j = 0; j <= size; j++) 

Conv_acc += $Input1$[i + j] * $Input2$[size-j];
$Name_Output$[i] = Conv_acc;

}
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Figure 3: An example of I/O mapping derivation. The subfig-

ure (a) is Selector block’s property, while the subfigure (b)

shows the mapping between inputs and output.

range, Frodo selects an appropriate code snippet and replaces the
placeholders with the corresponding actual values. For instance,
$Input2_size$ is replaced with the size of the second input of the
Convolution block.

<Actor Name="Const" Type="Constant">
<Output Name="#Output1" Type="#Default"/>
<Parameter Name="Value" Value="[5 54]"/>

</Actor>
...
<Connection>
<Src Src="Convolution.#Output1"/>
<Dst Dst="Selector.#U"/>

</Connection>
...
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{
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int size = $Input2_size$;
float Conv_acc = 0;
for (int i = 0; i <= size; i++) {

Conv_acc += $Input1$[$Index$ + i] * $Input2$[size-i];
}
$Name_Output$[$Index$] = Conv_acc;

int size = $Input2_size$;
for (int i = $Start$; i < $End$; i += $Interval$)
{

float Conv_acc = 0;
for (int j = 0; j <= size; j++) {

Conv_acc += $Input1$[i + j] * $Input2$[size-j];
}
$Name_Output$[i] = Conv_acc;

}
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float Conv_acc = 0;
for (int i = 0; i <= size; i++) 

Conv_acc += $Input1$[$Index$ + i] * $Input2$[size-i];
$Name_Output$[$Index$] = Conv_acc;

int size = $Input2_size$;
for (int i = $Start$; i < $End$; i += $Interval$){

float Conv_acc = 0;
for (int j = 0; j <= size; j++) 

Conv_acc += $Input1$[i + j] * $Input2$[size-j];
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Figure 4: An element-level code library of the Convolution
block. The variables highlighted in red need to be substituted

with the corresponding parameters of the target block.

Code Synthesis. First, Frodo determines the translation se-
quence of the blocks by employing a topological-based method.
Then, for basic blocks, Frodo supports customized DLL (Dynamic
Link Library) files to generate the corresponding code. Subsequently,
the code generated for basic blocks and optimizable blocks is synthe-
sized, forming the function code of the target model in accordance
with the translation sequence above. Additional relevant informa-
tion is encapsulated in certain header files for later usage. Finally,
all of the above code is bundled together for deployment.

Figure 5 illustrates howwe perform redundancy elimination on a
target Simulink model (Convolution model as shown in Figure 1).
After converting the target model into the customized dataflow

graph, Frodo identifies the root blocks for optimization, i.e., block
1 , block 2 , and block 3 . For each root block, Frodo recursively
determines its calculation range as well as subsequent blocks. For
instance, consider the Step 1. Frodo first determines the calculation
range of actor 6 , as it has no child actors. After that, Frodo deter-
mines the calculation range of actor 5 , given that actor 6 is con-
nected to actor 5 . Then, Frodo determines the calculation range
of actor 4 from [0, 59] to [5, 54], as it connects to a data-truncation
actor (actor 5 ). Finally, Frodo repeats the aforementioned step
until the calculation range of actor 1 is determined. Based on the
calculation ranges, Frodo classifies blocks into basic blocks and
optimizable blocks. Frodo generates concise code for optimizable
blocks in accordance with the eliminated calculation range. This
code is then synthesized with code generated from basic blocks,
yielding high-efficiency embedded code.
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Figure 5: Illustration of redundancy elimination.

4 EVALUATION

Implementation:We have developed Frodo 1 in C++ with 24,156
lines of code. The tool supports numerous blocks, including math
operation blocks, matrix operation blocks, complex blocks, etc. For
each supported block, we manually developed the corresponding
block property library and element-level code library for optimiza-
tion, according to the block type and parameters. These libraries
are recorded as external files to support cross-architectures.
Evaluation Setup: To investigate the effectiveness of our approach,
we compared Frodo with three state-of-the-art code generators,
Simulink Embedded Coder [13], DFSynth [15], and HCG [17]. The
comparison experiments were conducted across different archi-
tectures with two C-Compilers, GCC and Clang. We evaluated
the performance of Frodo on a benchmark of 10 commonly used
data-intensive Simulink models collected from industry [17, 18], as
shown in Table 1. We also generated a large number of random test

1The implementation and the results are represented at the repository.https://
anonymous.4open.science/r/Frodo-2E05/

https://anonymous.4open.science/r/Frodo-2E05/
https://anonymous.4open.science/r/Frodo-2E05/
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cases for the code generated by Frodo and compared the results
with those from model simulations. The consistency between them
underscores the correctness of Frodo.

Table 1: Description of benchmark models.

Model Functionality #Block
AudioProcess Vehicle audio analysis 51
Decryption Decryption protocol 39
HighPass HighPass filter model 49
HT Hermitian transpose matrix calculation 26
Kalman Automotive temperature control module 46
Back Backpropagation in the CNN model 24
Maintenance Industry equipment preservation model 165
Maunfacture Product quality assessment model 29
RunningDiff Differential amplifier 106
Simpson Numerical integration model 30

4.1 Effectiveness on Benchmark Models

To demonstrate the performance of the code generated by Frodo,
we conducted the experiment on the benchmark models. The exper-
iment environment was an experimental machine (Win11, AMD
Ryzen 7 5800X, 32GB memory). The generated code was compiled
by the state-of-the-art compilers, i.e., GCC (v11.3.0) and Clang
(v14.0.6), employing the -O3 optimization flag. In addition, to elimi-
nate statistical errors, the generated code was repeatedly executed
10,000 times to obtain the average results for comparison.

Table 2: Comparison of the code execution duration on x86

using GCC and Clang compilers, both compiled with -O3flag.

Model GCC Clang
Simulink DFSynth HCG Frodo Simulink DFSynth HCG Frodo

AudioProcess 1.583s 0.492s 0.517s 0.333s 1.574s 0.583s 0.419s 0.202s
Decryption 0.370s 0.303s 0.261s 0.213s 0.370s 0.211s 0.184s 0.119s
HighPass 0.865s 0.291s 0.326s 0.160s 0.558s 0.323s 0.307s 0.182s
HT 0.651s 0.715s 0.650s 0.311s 0.711s 0.753s 0.743s 0.317s
Kalman 0.370s 0.266s 0.260s 0.201s 0.400s 0.333s 0.311s 0.223s
Back 0.304s 0.451s 0.699s 0.241s 0.789s 0.536s 0.759s 0.250s
Maintenance 0.931s 0.295s 0.386s 0.223s 0.859s 0.343s 0.271s 0.189s
Maunfacture 2.251s 0.973s 0.658s 0.486s 3.449s 1.114s 0.883s 0.526s
RunningDiff 0.708s 0.722s 0.193s 0.125s 0.576s 0.589s 0.195s 0.118s
Simpson 0.949s 0.428s 0.433s 0.266s 1.385s 0.551s 0.409s 0.248s

Table 2 shows the experiment results and performance improve-
ment. For comparison experiments compiled with GCC, the execu-
tion duration of Frodo is 1.26× - 5.64× faster than Simulink, 1.32×
- 5.75× faster than DFSynth, and 1.22× - 2.89× faster than HCG.
As for compiling with Clang, the execution duration of Frodo is
1.79× - 7.78× faster than Simulink, 1.49× - 4.99× faster than DF-
Synth, and 1.39× - 3.03× faster than HCG. The data reveals that
under the highest optimization level that can be applied to the
code, Frodo achieves a significant performance improvement. This
demonstrates the effectiveness and practicability of our approach.

The performance of the code generated by Simulink is relatively
limited. Simulink indeed employs some optimization techniques, in-
cluding SIMD instruction utilization and expression collapse. How-
ever, it usually fails to effectively identify the target blocks to ap-
ply SIMD instructions, resulting in limited performance. As for
expression collapse, compilers employ a similar and effective imple-
mentation in the compilation process. Besides, we found that the

code generated by Simulink significantly underperforms other code
generators on AudioProcessmodel and Manufacturemodel. This
disparity is due to the fact that these models contain Convolution
blocks and Simulink generates numerous boundary judgments to
ascertain whether values should undergo convolution calculations.

DFSynth mainly focuses on generating concise code for com-
plex branch blocks within the model, thus lacking optimization
techniques for data-intensive models. HCG synthesizes appropriate
SIMD instructions for compute-intensive blocks to improve the
efficiency of the generated code. However, compilers, including
GCC and Clang, utilize similar optimization techniques to speed
up the execution. As a result, at high levels of optimization, the
optimization methods provided by HCG become less effective and
may even have a negative impact. For example, consider the gen-
erated code of the Back model. By analyzing the assembly code,
we found that HCG’s employment of SIMD instructions, such as
_mm256_fmadd_pd, prompts the compiler to generate assembly code
mirroringHCG’smethodology. This, in turn, hinders other potential
optimization techniques supported by compilers from effectively
manifesting. Consequently, the compiled assembly code is both
verbose and lengthy.

Compared to other code generators, Frodo strategically exploits
critical information, specifically the dataflow graph and I/O map-
ping. This enables Frodo to accurately determine the calculation
range of each block, thereby identifying a significant amount of
time-consuming and redundant calculations. In fact, compilers have
similar implementations, e.g., -fmove-loop-invariants, which
strive to eliminate or move code that does not change across it-
erations outside of the loop. However, the effectiveness of these
techniques depends on the compiler’s capability to determine that
the code is indeed invariant. Due to the invisibility of high-level
information contained in the model, such as inputs/outputs, and
block functionality, compilers are unable to classify variables as
invariants definitively. Moreover, the intricate data types within the
generated code, such as pointers, pose substantial analytical chal-
lenges for compilers. Consequently, compilers often fail to employ
aggressive optimization techniques, thereby limiting the potential
for performance improvement.

4.2 Effectiveness on Different Architectures

To demonstrate the effectiveness of Frodo on different architec-
tures, we conducted repetitive experiments on an industrial ma-
chine with an ARM processor (Linux v6.1.21, ARM Cortex A72,
8GB memory), using GCC (v11.3.0) and Clang (v14.0.6) compilers.

Figure 6 shows the execution improvement of the code gener-
ated by Frodo compared to other code generators on the ARM
architecture. Each bar represents the performance improvement
achieved by Frodo compared to the corresponding code generator.
Compared to previous experiments on the x86 architecture, Frodo
achieves better performance improvement on the ARM architecture.
For comparison experiments compiled with GCC, the execution
duration of Frodo is 1.71× - 8.55× faster than Simulink, 1.44× -
4.10× faster than DFSynth, and 1.17× - 3.75× faster than HCG. As
for compiling with Clang, the execution duration of Frodo is 1.68×
- 6.46× faster than Simulink, 1.40× - 2.85× faster than DFSynth,
and 1.34× - 3.17× faster than HCG. Due to the constrained perfor-
mance capabilities of embedded devices, the hardware optimization
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techniques employed by them are limited. For example, consider
the support for SIMD instructions. The AMD processor utilized
above supports 512-bit SIMD instructions, while the ARM proces-
sor utilized in the embedded device only supports 128-bit SIMD
instructions. As a result, for embedded devices with limited perfor-
mance, the major performance bottlenecks come from the logic of
the generated code. Frodo benefits from this and achieves a better
performance improvement.
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Figure 6: The execution improvement of the code generated

by Frodo versus other code generators on ARM. The red line

shows the execution duration of Frodo as the baseline.

5 DISCUSSION

To fully evaluate our approach, we conducted experiments in terms
of memory. Our findings reveal that the code generated by the
different code generators consumes a comparable amount of mem-
ory during execution. Given that they use the same quantity of
variables and abstain from memory allocation functions such as
malloc, the heap size among the compiled files remains consistent.
Since all codes are compiled with the same compiler, their stack
memory is consistent. Other memory metrics have little impact due
to the relatively small size of the target files. This shows that Frodo
enhances code performance without incurring memory overhead.

Besides the above discussions, there are some threats to valid-
ity. For complex blocks, such as the Convolution block, Frodo
should generate multiple instances of code for the same block type
in accordance with their distinct calculation range. This results in
longer code relative to other code generators. Frodo can avoid such
code duplication by generating a generic function interface and
configuring the derived calculation range as parameters. For blocks
with discontinuous calculation ranges, Frodo generates appropri-
ate code and distinct variables for each discrete calculation range.
This may hinder the effective utilization of advanced optimizations,
such as SIMD instructions. To address this, Frodo can allocate a
continuous memory space for these distinct variables.

6 CONCLUSION

In this paper, we propose Frodo, an efficient code generator for
data-intensive Simulink models via redundancy elimination. Frodo
first conducts model analysis to construct the dataflow graph and
derive the I/O mapping of each block. Then, based on the collected

information, Frodo determines the precise calculation range of
each block and generates concise code for optimizable blocks. We
evaluate the effectiveness of Frodo on benchmark Simulink models
across different compilers and architectures. The results show that
comparedwith state-of-the-art code generators Simulink Embedded
Coder, DFSynth, and HCG, Frodo achieves significant performance
improvement without additional memory usage.
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