
1

KNIGHT: Optimizing Code Generation for Simulink
Models with Loop Reshaping

Zehong Yu∗, Yixiao Yang†, Zhuo Su �∗, Rui Wang†, Yang Tao‡ and Yu Jiang �∗
∗KLISS, BNRist, School of Software, Tsinghua University, Beijing 100084, China
†Information Engineering College, Capital Normal University, Beijing 100089, China

‡HUAWEI Technologies, Co. LTD. Shanghai 200120, China

Abstract—Simulink has become a pivotal infrastructure in
embedded scenarios, including automotive systems and aerospace
designs. To improve the performance of the code generated
from Simulink models, state-of-the-art code generators employ
various optimization techniques, such as expression folding, vari-
able reuse, and parallelism. However, they struggle to generate
efficient code for loop-semantic models which are crucial in
substantial data processing tasks. This inefficiency manifests in
numerous redundant calculations, such as array calculations
and conditional statements. As a result, the performance of the
generated code is limited.

This paper proposes KNIGHT, an efficient code generator for
loop-semantic Simulink models with loop reshaping. KNIGHT
first parses the Simulink model to extract essential content
such as block functionalities and connections. KNIGHT then
identifies blocks with internal states, and implements the specific
interaction rules to discern those that are state-dependent. For
state-dependent blocks, KNIGHT conducts forward inference
to obtain their preceding blocks, which influence the internal
state calculations. Subsequently, KNIGHT isolates blocks that
are optimizable and irrelevant to the internal states. These
blocks are strategically relocated outside the loop semantics,
while preserving critical semantics related to code generation.
We implemented and evaluated KNIGHT on benchmark Simulink
models across different compilers and architectures. Compared
with the state-of-the-art code generators Simulink Embedded
Coder, DFSynth, and HCG, the code generated by KNIGHT
is 16.58× faster, 16.89× faster, and 15.38× faster in terms
of execution duration on average, without incurring additional
overhead of memory usage.

Index Terms—Simulink Models, Loop-Semantic, Code Gener-
ation

I. INTRODUCTION

Simulink [1], the most widely used model-driven design
tool, serves as the fundamental infrastructure for various
embedded scenarios, including automotive systems, aerospace
design, and DSP systems [2], [3], [4], [5]. Developers can use
the powerful toolkit supported by Simulink, such as simula-
tion, verification, and code generation, to facilitate embedded
software development. Among them, code generation is a pop-
ular technique for automatically converting the target model
into deployable source code, which saves significant labor
efforts and receives major adoption in embedded software
development. However, the code efficiency should be ensured,
as it directly affects the efficiency of the whole system and
most embedded devices have limited performance [6].

Simulink supports loop-semantic blocks for modeling that
take arrays as input and output, and perform intensive calcula-
tions on them, to meet the demands of processing datasets or

signal streams. These blocks, such as the For-Iterator
subsystem, are widely used in both industrial production
pipelines and academic benchmarks [7], [8], [9] to effectively
manipulate large-scale data. The code efficiency is highly
dependent on the comprehension and optimization of loop-
semantic blocks within the target model. This is because these
blocks are directly related to loop constructs in the generated
code, including for statement and while statement, which are
calculation-intensive and time-consuming.

State-of-the-art code generators employ several strategies
to ensure code efficiency. For example, Simulink Embedded
Coder [10], the built-in tool, supports various optimization
options, including expression folding and variable reuse. Typ-
ically, those optimization techniques are aimed at generating
improved code for individual blocks, without considering the
loop semantics. Academic works also have made efforts to
improve code efficiency. For example, HCG [11] synthe-
sizes SIMD (Single Instruction Multiple Data) instructions for
parallel computation in the model to enhance performance.
However, at high-level optimization flags, e.g., -O3, compilers
also synthesize SIMD instructions within the assembly code,
and optimization methods provided by HCG become less
effective and may even bring a negative impact.

In fact, the bottleneck of code generation for loop-semantic
models arises from redundant calculations within these mod-
els, overlooked by the above code generators. The intercon-
nected nature of the blocks means that the execution behavior
of one block can significantly impact others, due to the
underlying data relationships and modeling semantics. These
interactions between model blocks can lead to redundant cal-
culations, which simultaneously occur in the generated code.
For instance, an Assign block within the For-Iterator
subsystem, can cause its subsequent blocks to operate on an
array of data rather than single elements, thereby leading to ex-
tensive redundant calculations. More critically, these redundant
calculations, nested within loop semantics, result in repetitive
execution and a performance gap. A detailed description of
this example will be illustrated in Section III. On the other
hand, the optimization techniques employed by state-of-the-art
compilers, including GCC and Clang, also fail to effectively
eliminate these redundant calculations during the compilation
process. Without in-depth knowledge of the target model
semantics, such as inport/outport and block functionality,
compilers struggle to identify and eliminate invariant variables.
Moreover, the intricate data types within the generated code,



2

such as pointers, pose substantial analytical challenges for
compilers. Consequently, these limitations prevent compilers
from optimizing the generated code effectively, thereby im-
pinging on the overall performance.

However, it is challenging to effectively eliminate redun-
dant calculations in code generation. There are two main
challenges: (1) The first challenge is to precisely analyze
interactions for discovering redundant calculations. Interac-
tions between blocks encompass not only those that are
directly connected but also those indirectly linked. The space
of possible interactions is vast, while most interactions are
meaningless or equivalent for optimization. Therefore, it is of
vital importance to discern the specific characteristics behind
interactions that lead to redundant calculations and to provide
a general method for identifying them. (2) The second chal-
lenge is to effectively optimize redundant calculations while
maintaining correctness. Since redundant calculations may
be distributed across multiple different blocks, it requires a
carefully-crafted optimization method to fully eliminate these
redundant calculations. Besides, the original model semantics,
such as data relationships and block functionalities, should be
maintained to guarantee the correctness of the generated code.

To address the aforementioned challenges, we propose
KNIGHT, an efficient code generator for loop-semantic
Simulink models with loop reshaping. It mainly focuses on
fully utilizing model semantics to avoid redundant calculations
in code generation. Firstly, KNIGHT parses the Simulink model
to obtain essential content as a preparation step, including
block functionalities, connections, inports/outports, etc. Then,
based on the collected content, KNIGHT identifies blocks with
internal states, and then implements the specific interaction
rules to determine if they are state-dependent. For state-
dependent blocks, KNIGHT conducts forward inference to
identify preceding blocks of these state-dependent blocks,
which influence the internal state calculations. Subsequently,
KNIGHT obtains optimizable blocks irrelevant to the internal
states, and then strategically relocates them outside the loop
semantics, while preserving critical semantics related to code
generation. Finally, KNIGHT performs code synthesis for each
block to generate high-efficiency embedded code.

We implement and evaluate the effectiveness of KNIGHT on
benchmark Simulink models [12], [13], across different com-
pilers and architectures. The results demonstrate that KNIGHT
gains pronounced performance improvement. Compared with
the state-of-the-art code generators Simulink Embedded Coder,
DFSynth, and HCG, the code generated by KNIGHT is on av-
erage 16.58× faster, 16.89× faster, and 15.38× faster, in terms
of execution duration. We also conducted experiments in terms
of memory usage. The data shows that KNIGHT improves
code performance without incurring additional overhead. In
summary, this paper makes the following contributions:

• We identify that state-of-the-art code generators fall short
of generating efficient code for loop-semantic Simulink
models, leading to numerous redundant calculations.

• We propose KNIGHT, an efficient code generator for
loop-semantic models. It first identifies state-dependent
blocks within the target model, and then relocates irrel-
evant blocks outside the loop semantics for generating

efficient embedded code.
• We implement KNIGHT and evaluate it on widely-used

benchmark Simulink models. The results demonstrate that
KNIGHT outperforms the state-of-the-art code generators
across different compilers and architectures, without in-
curring additional overhead.

II. BACKGROUND

A. Model-Driven Design

Model-driven design has emerged as a widely adopted ap-
proach in the embedded systems domain, offering a systematic
and structured method for designing complex systems[14],
[15], [16], [17], [18]. This approach usually encompasses
four critical stages: model construction, model simulation,
model verification, and code generation[19], [1], [20], [21].
Each stage serves a unique purpose and contributes to the
overall efficiency and effectiveness of the model-driven design
process. 1 Model construction entails creating a compre-
hensive representation of the system’s behavior based on its
functional requirements. By constructing a detailed model,
developers can visualize the inner workings of the system
and facilitate developer understanding. 2 Model simulation
allows developers to identify and address potential issues early
in the development process. 3 Model verification utilizes
static analysis techniques to verify whether the model adheres
to predefined modeling specifications. 4 Code generation is
responsible for transforming the model into executable code
suitable for the target embedded system. This stage is crucial
because the efficiency and reliability of the generated code
affect the performance and success of the embedded system.

B. Simulink and Dataflow Model

Simulink, a part of the MATLAB software suite devel-
oped by MathWorks, is a powerful graphical programming
environment that provides a block diagram editor and a
customizable set of block libraries. Simulink enables users
to design, simulate, and analyze dynamic systems, such as
control systems, signal processing, and communication sys-
tems. It is particularly useful for modeling linear and nonlinear
systems, discrete-event systems, and multi-domain systems,
which include mechanical, electrical, hydraulic, and thermal
components. Simulink also offers advanced tools for analysis,
code generation, and other tasks.

The dataflow model is a widely recognized paradigm for
modeling and analyzing dynamic systems[22], [23], [24].
It visually represents how data moves and changes within
a system, using a graph where each node represents dif-
ferent functions and the lines between them represent the
flow of data. Each node processes incoming data based on
specific rules or equations, transforming it into output data.
These equations or rules are typically expressed using a
mathematical or programming language, depending on the
system’s functionality. Functional elements within the model
can be aggregated to create subsystems, which may be further
integrated to construct larger, more complex systems. This
modular, hierarchical structuring facilitates the development
of organized and coherent models, simplifying both analysis
and modifications.



3

C. Code Generation

Code generation is of vital importance for model-driven
design, which releases the developers from error-prone coding
tasks and improves the efficiency of software development.
It primarily consists of four essential steps: model parse,
dataflow analysis, scheduling, and code synthesis [25], [26],
[27].These steps work together seamlessly to convert the user-
constructed Simulink models into efficient and deployable
code for target hardware platforms. 1 First, model parse,
as a preparation stage, analyzes and interprets the target
model into customized IR (Intermediate Representation) to
extract the critical information for further usages, such as the
model structure, blocks, and connections. 2 Then, dataflow
analysis is conducted on the obtained IR. By examining the
connections between actors, it derives the sequential rela-
tionship and connectivity between blocks. 3 Subsequently,
scheduling infers the translation sequence of model blocks,
based on the sequential relationship obtained from dataflow
analysis. It adopts a topological-based method to iteratively
select candidate blocks for translation. 4 Finally, for each
block, code synthesis generates corresponding code based on
its functionality and other properties, and then assembles them
into deployable code according to the translation sequence. As
long as the code generators ensure correctness and maintain
the original model semantics, they can customize their own
implementation for each block to enhance performance.

III. MOTIVATION

State-of-the-art code generators, such as Simulink Embed-
ded Coder [10] and HCG [11], employ various optimization
techniques to ensure the efficiency of the generated code,
including expression folding, variable reuse, and instruction
parallelism. These approaches have demonstrated impressive
results in numerous scenarios, and the generated code has been
deployed in many critical embedded systems [28], [29]. How-
ever, they still fall short of generating efficient code for loop-
semantic Simulink models. Specifically, the code generated by
these tools contains numerous redundant statements, such as
repetitive initialization, leading to unsatisfactory performance.
Moreover, such redundant statements bring challenges for
compilers to optimize. For instance, the complex conditional
statements hinder the potential for loop unrolling and SIMD
instruction utilization. Consequently, code generators must
address these issues effectively.

A. Illustrative Example

Figure 1 illustrates an example to demonstrate the severity
of the aforementioned problems. Figure 1a shows the internal
structure of a For-Iterator subsystem, which serves as
a sample binarization part [30] for the image processing
application. This model converts a grayscale image into a
binary image (black and white) by setting a threshold value.
Pixels with intensity values greater than the threshold are set
to 255 (white), while those below the threshold are set to
0 (black). Specifically, it first uses the pixels restored in the
img block as initialization. Then, Selector block iteratively
reads pixels from In block and sends the obtained pixels to
Assign block. For-Iterator block is the index block

1Inport

Outport 1

For-Iterator
Subsystem

1 void binarize(uint8_t In[32], 
2 uint8_t Out[64]) {
3 int i;
4 int j;
5 uint8_t Assign[64];
6 memcpy(&Assign[0], &img[0],
7      sizeof(uint8_T) << 6U);
8 for (i = 0; i < 32; i++) {
9 Assign[i] = In[i];
10 for (j = 0; j < 64; j++) {
11 Switch[j] = Assign[j] > 
12 Threshold ? 255U : OU;
13 }
14 }
15 for (i = 0; i < 64; i++) {
16 Switch[i] = Assign[i] > 
17 threshold ? 255U : OU;
18 }
19 memcpy(&Out[0], &Switch[0],
20 sizeof(uint8_t) << 6U);
21 }

1 void binarize(uint8_t In[32], 
2 uint8_t Out[64]) {
3 int i;
4 int j;
5 uint8_t Assign[64];
6 memcpy(&Assign[0], &img[0],
7 sizeof(uint8_T) << 6U);
8 for (i = 0; i < 32; i++) {  
9 Assign[i] = In[i];
10 for (j = 0; j < 64; j++) {
11 Switch[j] = Assign[j] > 
12 threshold ? 255U : OU;
13 }
14 }
15
16
17
18
19 memcpy(&Out[0], &Switch[0],
20 sizeof(uint8_t) << 6U);
21 }

(a) Original Code

(a) Motivation Model

(b) Optimized Code

1

In

Out

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assign

White

0

Black

Switch

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

(b) Original Code

(c) Optimized Code

1
In

Out

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assign

White

0

Black

Switch

1Inport

Outport 1

For-Iterator
Subsystem

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

(a) Motivation Model

1Inport

Outport 1

For-Iterator
Subsystem

1 void binarize(uint8_t In[32], 
2 uint8_t Out[64]) {
3 int i;
4 int j;
5 uint8_t Assign[64];
6 memcpy(&Assign[0], &img[0],
7      sizeof(uint8_T) << 6U);
8 for (i = 0; i < 32; i++) {
9 Assign[i] = In[i];
10 for (j = 0; j < 64; j++) {
11 Switch[j] = Assign[j] > 
12 Threshold ? 255U : OU;
13 }
14 }
15 for (i = 0; j < 64; i++) {
16 Switch[i] = Assign[i] > 
17 threshold ? 255U : OU;
18 }
19 memcpy(&Out[0], &Switch[0],
20 sizeof(uint8_t) << 6U);
21 }

1 void binarize(uint8_t In[32], 
2 uint8_t Out[64]) {
3 int i;
4 int j;
5 uint8_t Assign[64];
6 memcpy(&Assign[0], &img[0],
7 sizeof(uint8_T) << 6U);
8 for (i = 0; i < 32; i++) {  
9 Assign[i] = In[i];
10 for (j = 0; j < 64; j++) {
11 Switch[j] = Assign[j] > 
12 threshold ? 255U : OU;
13 }
14 }
15
16
17
18
19 memcpy(&Out[0], &Switch[0],
20 sizeof(uint8_t) << 6U);
21 }

(a) Original Code

(a) Motivation Model

(b) Optimized Code

1

In

Out

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assign

White

0

Black

Switch

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

(b) Original Code

(c) Optimized Code

1
Inport

Outport

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assignment

White

0

Black

Switch

1Inport

Outport 1

For-Iterator
Subsystem

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

(b) Original Code

1Inport

Outport 1

For-Iterator
Subsystem

1 void binarize(uint8_t In[32], 
2 uint8_t Out[64]) {
3 int i;
4 int j;
5 uint8_t Assign[64];
6 memcpy(&Assign[0], &img[0],
7      sizeof(uint8_T) << 6U);
8 for (i = 0; i < 32; i++) {
9 Assign[i] = In[i];
10 for (j = 0; j < 64; j++) {
11 Switch[j] = Assign[j] > 
12 Threshold ? 255U : OU;
13 }
14 }
15 for (i = 0; i < 64; i++) {
16 Switch[i] = Assign[i] > 
17 threshold ? 255U : OU;
18 }
19 memcpy(&Out[0], &Switch[0],
20 sizeof(uint8_t) << 6U);
21 }

1 void binarize(uint8_t In[32], 
2 uint8_t Out[64]) {
3 int i;
4 int j;
5 uint8_t Assign[64];
6 memcpy(&Assign[0], &img[0],
7 sizeof(uint8_T) << 6U);
8 for (i = 0; i < 32; i++) {  
9 Assign[i] = In[i];
10 for (j = 0; j < 64; j++) {
11 Switch[j] = Assign[j] > 
12 threshold ? 255U : OU;
13 }
14 }
15
16
17
18
19 memcpy(&Out[0], &Switch[0],
20 sizeof(uint8_t) << 6U);
21 }

(a) Original Code

(a) Motivation Model

(b) Optimized Code

1

In

Out

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assign

White

0

Black

Switch

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

(b) Original Code

(c) Optimized Code

1
Inport

Outport

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assignment

White

0

Black

Switch

1Inport

Outport 1

For-Iterator
Subsystem

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

(c) Optimized Code

Fig. 1: A Simulink model to illustrate the motivation of
our approach. It represents the binarization part of an image
processing application, which converts a grayscale image into
a binary image (black and white). The data length emitted from
each outport is denoted by the numbers above the connections.
The left code is generated by Simulink Embedded Coder,
while the right code is optimized by loop reshaping. The
differences lead to the time complexity from O(n) to O(n2).

within the For-Iterator subsystem, which determines
the pixels read in each iteration. Finally, the obtained pixels
are sent to the Switch block to determine whether they
exceed the threshold value. If the threshold is exceeded, 255 is
assigned to the Out block; otherwise, 0 is assigned to it. Note
that, the data object transferred and manipulated by Assign
block and its subsequent blocks is a 64-length array since both
the img block and Out block handle 64-length arrays.

By comparing the code generated by Simulink Embedded
Coder (Figure 1b) with the optimized code (Figure 1c), we
found that the root cause of the code inefficiency is the
redundant for statement (line 10-13 in Figure 1b). Since the
data object of Switch block is a 64-length array, Simulink
Embedded Coder should generate for statement to represent
this semantic. However, the presence of the For-Iterator
and Assign blocks indicates that the execution of the
Switch block is required only after Assign block’s result is
finalized. By considering this interaction, the aforementioned
for statement can be relocated outside the outer for statement
(line 15-18 in Figure 1c), reducing time complexity of the
entire function from O(n2) to O(n).

To quantitatively understand the severity of the aforemen-
tioned issues, we compile both the code generated by Simulink



4

Embedded Coder and its optimized counterpart across C-
Compilers, i.e., GCC and Clang. Subsequently, the compiled
versions with different optimization levels are deployed on an
experimental machine (Win11, AMD Ryzen 7 5800X, 32GB
memory) to collect execution duration statistics. The statistics
as shown in Table I reveal that there exists a significant perfor-
mance gap between the original code and the optimized code
among various optimization levels employed by compilers.

Moreover, the results show that the carefully-crafted opti-
mizations implemented by compilers are rendered ineffective
in addressing this issue without high-level knowledge of
model semantics. Some optimization techniques employed by
compilers may even exacerbate this problem. For instance, the
original code compiled with GCC takes a longer execution
time at the -O2 flag compared to the -O1 flag. Besides,
although the original code compiled with Clang employing
-O3 flag achieves a satisfactory result, taking 0.163s for
execution, there remains a more than 10× performance gap
compared to the optimized code compiled under the same
settings. In other words, the time complexity issue (line 8-
14 in Figure 1b) remains unresolved even with the highest
optimization level of Clang. More importantly, considering
the constrained performance capabilities of embedded devices,
such a pronounced performance gap is deemed unacceptable
[31]. In summary, these issues emphasize the importance of
code generation for loop-semantic models and the urgent need
for an effective approach to enhance performance.

TABLE I: Comparison of execution duration between the
original code generated by Simulink Embedded Coder and
optimized code with loop reshaping across different compilers
and optimization levels.

Optimization Level Original Code Optimized Code

GCC

O0 10.950s 0.468s
O1 4.558s 0.138s
O2 5.386s 0.129s
O3 2.094s 0.014s

Clang

O0 13.235s 0.524s
O1 4.545s 0.138s
O2 0.173s 0.014s
O3 0.163s 0.014s

B. Observation

The root cause of the code inefficiency, as illustrated in
Figure 1, is that code generators generate code for each block
in isolation, without carefully considering their interactions,
thereby leading to a marked escalation in execution duration.

We observed that the redundant for statements are present in
blocks following the Assign block, such as Switch block.
With the in-depth analysis of Assign block’s functionality
and its interactions with other blocks, we identified two
key characteristics behind Assign block: (1) Presence of
Internal State. The internal state of Assign block saves
the execution results and is utilized for subsequent execution,
which represents a pre-defined variable in the code level.
During the iterative execution of the model, this internal state
is dynamically updated in response to the outcomes of each
execution. (2) Dependency on Previous States. During each
iteration, Assign block utilizes the value obtained from “U”

port to update the index element specified by “Idx” port, i.e.,
Assign[Idx] = U. Due to the presence of For-Iterator
block, this process is a continuous accumulation. For instance,
line 8-14 in Figure 1b demonstrate this. When the loop
reaches its 32nd iteration, i.e., iter = 31, the values assigned
in previous iterations continue to be preserved in the Assign
array, without being overwritten. We define blocks that exhibit
both of these characteristics as State-Dependent Blocks. Note
that whether a block contains an internal state is dictated by
its specific functionality. In Simulink, numerous blocks, such
as Delay block, Data Memory block, and Accumulator
block, contain internal states. The dependence of a block’s
internal state on its previous states, however, is determined by
its interactions with other blocks.

The characteristics mentioned above inspire us to under-
stand the code inefficiency from the perspective of model
semantics, rather than the code level. Specifically, since the
execution result of the Assign block depends on its previous
state, the preceding blocks connected to the Assign block
must be situated within the scope of the outer for statement.
This is because the previous and current states of the Assign
block are ascertained from the execution outcomes of these
preceding blocks. On the other hand, for subsequent blocks
that are directly or indirectly connected to the Assign block,
if they do not contain internal states and are not preceding
blocks of other state-dependent blocks, then their execution
results are solely determined by the final state of the Assign
block. Therefore, such blocks can be relocated outside the
outer for statement.

In summary, our observation reveals that redundant cal-
culations within loop-semantic models are highly related to
state-dependent blocks, while existing code generators do
not take them into account. This motivates us to design
KNIGHT, an efficient code generator for loop-semantic models.
KNIGHT precisely analyses the interactions between blocks to
identify state-dependent blocks, and then effectively optimizes
the redundant calculations caused by state-dependent blocks,
thereby improving overall performance.

IV. DESIGN

In this section, we detail the design of KNIGHT, which
generates efficient code for loop-semantic models. Figure 2
shows the overall framework of KNIGHT. It mainly contains
the following two key components. (1) Interaction-Oriented
Analysis: KNIGHT first parses the Simulink model to ob-
tain essential information as the preparation step, including
block functionalities, connections, inports/outports, etc. Then,
KNIGHT analyses the functionality and semantics of each
block to determine whether it contains internal states. For those
blocks containing internal states, KNIGHT implements corre-
sponding interaction rules to analyze their interactions with
other blocks, subsequently determining if these components
are state-dependent. (2) Loop Reshaping: For state-dependent
blocks, KNIGHT, based on connection relationships, performs
forward inference, identifying blocks that are either directly
or indirectly connected to state-dependent blocks, as these
are related to the calculation of internal states. Conversely,
for other blocks that are optimizable but irrelevant to the



5

internal state, KNIGHT strategically relocates them outside the
loop semantics, while preserving the semantics related to code
generation to ensure correctness. Finally, KNIGHT performs
code synthesis for each block.

A. Important Definitions

Before introducing the design of KNIGHT in detail, we first
define important concepts used in this paper as follows:

Definition 4.1 (Dataflow Graph): Dataflow graph G is
denoted as a tuple {B, I,O,C}. B = {b1, b2, ..., bn} is the set
of blocks of G. I = {i1, i2, ..., in} and O = {o1, o2, ..., on}
represent the set of inports and outports of G. Inports accept
the data required by the target block, where outports output
the result of the block’s execution. C = {c1, c2, ..., cn} is the
set of connections within G, where each ci ∈ O×I represents
a connection from an output oi (data source) to an inport ii
(data destination). Notably, each block bi can either be a basic
block, denoted as ḃi, or a subsystem, denoted as b̈i.

Definition 4.2 (Basic Block): Basic block ḃ is defined as a
tuple {f, I, O,Σ}. f : VI → VO represents the functionality
of ḃ, which takes values VI from inports I to calculate the
values VO at outports O. I and O represent the set of inports
and outports of ḃ. Σ = {σ1, σ2, ..., σn} represents the set
of internal states of ḃ. Specifically, some blocks preserve the
current execution results for other usages. We refer to variables
that save these results as internal states Σ. If a basic block ḃ
has no internal states, then Σ = ∅.

Definition 4.3 (Composite Block): Composite block b̈ is
defined as a tuple {f,B, I,O,C,Σ}. f represents the func-
tionality of b̈. B represents the set of blocks within b̈. I and
O represent the set of inports and outports of b̈. C represents
connections within b̈. Σ represents the internal states of b̈; Note
that, functionality f of composite block b̈ is synthesized by
the functionalities {fb1 , fb2 , ..., fbn} of the contained blocks
B, i.e., f = fb1⊕fb2⊕· · ·⊕fbn . Internal states Σ of composite
block b̈ is the union of the internal states {Σb1 ,Σb2 , ...,Σbn}
of the contained blocks B, i.e., Σ = Σb1 ∪ Σb2 ∪ · · · ∪ Σbn .

Definition 4.4 (Loop-Semantic Subsystem): Loop-semantic
subsystem s is a specialized type of composite block b̈,
denoted as a tuple {f, b̄, B, I, O,C,Σ}. Among them, f
represents the functionality of s. b̄ is the index block of s,
which records the total number of iterations required by the
loop-semantic subsystem s and tracks the current iteration
round. During each iteration, the count maintained by b̄ is
incremented by one, and it is checked against the total number
of iterations to determine if further iterations are needed. B
is the set of blocks within s except index block b̄. I and O
represents the set of inports and outports of s, respectively.
C includes all internal connections within the subsystem s.
Σ represents the set of internal states of b̄. Specifically, in
each iteration, s first activates the index block b̄ to determine
whether execution should continue. If the condition is met,
s retrieves the data from the inports I , passes this data to
contained blocks B, and obtains the execution results, which
are then sent to the outports O.

Definition 4.5 (State-Dependent Block): State-dependent
block b̂ is denoted as a tuple {f, I, O,Σ}. f : VI × Σ → VO

represents the functionality of b̂, which takes values VI from

inports I and internal states Σ to calculate the values VO

at outports O. I and O represent the set of inports and
outports of b̂. Σ represents the set of internal states of b̂. The
state-dependent block b̂ must satisfy the following conditions
simultaneously: (1) It contains internal states, i.e., Σ ̸= ∅.
(2) Its current state Σc depends on both the current values
of inports Vc = {vi0 , vi1 , ..., vin} and the previous states
Σp = {σp

0 , σ
p
1 , ..., σ

p
n}, i.e., Σc ← f(Vc × Σp).

Due to the interactions between blocks, the current values
of the internal states often relies on its previous state. We
will introduce these interactions and how to determine state-
dependent blocks in Section IV-B in detail.

B. Interaction-Oriented Analysis

Interaction-oriented analysis is to identify state-dependent
blocks B̂ for optimization. In this way, KNIGHT can obtain
blocks irrelevant to internal states and relocate them outside
the loop semantics, thereby avoiding redundant calculations.

Model Parse. KNIGHT first parses the given model to
extract the essential information. Specifically, the Simulink
model is a ZIP file that contains several crucial compo-
nents, including model structure, parameters, configuration,
and other properties. These components are recorded in the
corresponding XML files. KNIGHT systematically parses these
files from the given model to construct dataflow graph G
and gather crucial information, including block functionalities,
connections, and inports/outports.

Internal State Perception. During this stage, KNIGHT
performs dataflow analysis examining each block in the model.
It focuses on identifying if each block has internal states by
analyzing their specific functionalities. Blocks with different
types have distinct functionalities. Through a detailed analysis
of the block library supported by Simulink, we identified that
certain blocks contain internal states, and these blocks can be
divided into the following types.

• Memory type. This type of blocks requests and initializes
a memory space for data storage, and supports read and
write operations on this memory, such as Data Store
block, File block, etc.

• Delay type. This type of blocks is designed to output
the acquired data after a specific delay period. Simulink
supports various delay type blocks, which serve differ-
ent purposes, such as Unit Delay block, Tapped
Delay block, Transport Delay block, etc.

• Discrete-Calculation type. These blocks save the input
values distributed over discrete time and perform spe-
cific operations on these values, such as Accumulator
block, Integrator block, etc.

• Complex type. These blocks are used in complex model-
ing scenarios and utilize the internal state to implement
the corresponding functionalities, such as Assign block,
Bus Assign block, Difference block, etc.

Interaction Rules. For the dataflow model, the connections
define data dependencies between blocks, which similarly exist
among blocks that are indirectly connected. These dependen-
cies, called interactions, are crucial for identifying blocks that
are state-dependent. However, due to the extensive number of



6

Simulink
Model

Interaction-Oriented Analysis

Interaction 
Rules

Rule-Based
Searching

Model Parse

Loop Reshaping

Internal State
Perception

Code Synthesis

Semantic-Aware
Code Generation

Forward
Inference

Blocks 
Relocating

Simulink
Model

Model Analysis

Embedded
Code

Dataflow Graph 
Construction

I/O Mapping 
Derivation

Actor Property 
Library

Model Parse

Redundancy Elimination

Element-Level 
Code Library

Calculation Range
Determination

Basic 
Actors

Optimizable
Actors

Concise Code
Generation

Code Synthesis

State-Dependent
Blocks Embedded 

Code

Interaction
Rules

Fig. 2: An overview of KNIGHT. It mainly contains two key components. (1) Interaction-Oriented Analysis: KNIGHT first parses
the target model to extract critical contents for preparation. Then, KNIGHT identifies blocks with internal states in accordance
with their functionalities, and implements interaction rules to determine state-dependent blocks. (2) Loop Reshaping: For state-
dependent blocks, KNIGHT conducts forward inference to identify their preceding blocks. Then, KNIGHT obtains optimizable
blocks irrelevant to the internal states, and then strategically relocates them outside the loop semantics, while preserving critical
semantics related to code generation. Finally, KNIGHT performs code synthesis for each block.

blocks and the complexity of the connections, the space of pos-
sible interactions is vast, while most interactions are meaning-
less or equivalent for analysis. KNIGHT makes the following
efforts to figure out this problem. First, KNIGHT mainly con-
centrates on interactions that are relevant to blocks that contain
internal states. Through dataflow analysis, KNIGHT identifies
the preceding blocks connected to these blocks with internal
states. For example, consider the Assign block in Figure 1a.
By analyzing connections related to inports of Assign block,
KNIGHT can determine four preceding blocks to Assign
block, i.e., img block, In block, For-Iterator block, and
Selector block. These blocks determine the data source of
Assign block.

Second, KNIGHT implements specific interaction rules for
analyzing blocks with internal states, focusing on their interac-
tions to determine if they are state-dependent. More concretely,
given a block b contains an internal state σ, the carefully-
crafted rule R(b,G) → {true, false} is utilized to analyze
the related interactions extracted from the dataflow graph G,
using the following constructs. If R(b,G) = true, this implies
that the target block b is state-dependent; otherwise, it is not
considered state-dependent.

For each type of block with internal states, the interaction
rules are as follows: 1 For memory type blocks, KNIGHT
determines whether read and write operations on the memory
data occur simultaneously within the same loop-semantic
subsystem s. If so, the memory data changes across the
iterations, indicating that the block is state-dependent. 2 For
delay type blocks, KNIGHT determines whether these blocks
cause circular dependency in the model. If so, it indicates
that the values assigned to the delay block will be used in
subsequent iterations for calculation, thereby inferring that the
block is state-dependent. 3 For discrete-calculation blocks,
the functionality of these blocks inherently determines that
they are state-dependent, that is, they save values distributed
over discrete time and perform calculations on these values.
4 For complex blocks, KNIGHT should design interaction
rules in accordance with their functionalities and modeling
semantics. Take the Assign block in Figure 1a as an example.
KNIGHT evaluates if the value of the “idx” port is a variant
value. This port determines which specific elements the Assign
block assigns values to. Therefore, if this port obtains a variant,
then the elements assigned in each iteration are different,

Algorithm 1: Rule-Based Searching
Input: G: Dataflow graph of target model

R : Interaction rules
Output: B̂: State-Dependent blocks

1 Function RuleBasedSearching(G, R):
2 B̂ ← ∅
3 // traverse blocks within the graph
4 for b in G do
5 dependent← false
6 // determine if the block b contains internal state σ
7 if b contains σ then
8 t← b.type
9 // interaction rules

10 if t is memory then
11 dependent←R.memory(b, G)

12 else if t is delay then
13 dependent←R.delay(b, G)

14 else if t is discrete calculation then
15 dependent←R.discreteCalculation(b, G)

16 else if t is complex then
17 dependent←R.complex(b, G)

18 if dependent = true then
19 B̂.append(b)

20 return B̂

21 End Function

signifying state-dependent. For-Iterator block represents
the iteration rounds, which is a variant value and connects
to the “idx” port. Consequently, the Assign block updates
different elements in each iteration based on the previous ones,
confirming its state-dependent nature. Besides, when a block
contains multiple internal states, KNIGHT determines whether
each internal state is state-dependent. If at least one internal
state is state-dependent, then it is a state-dependent block.
For the subsystem within the model, whether they are state-
dependent depends on the inner blocks. That is, if there exist
state-dependent blocks, then it is state-dependent.

Rule-Based Searching. Leveraging the interaction rules,
KNIGHT employs a search method to traverse the dataflow
graph G, effectively identifying state-dependent blocks B̂. The
process of rule-based searching is detailed in Algorithm 1.
First, KNIGHT traverses the dataflow graph to identify blocks
that contain internal states (line 7). Specifically, KNIGHT
determines whether the type of the block b meets the require-
ments defined by internal state perception. If so, it indicates



7

that b contains the internal state σ, allowing for further opera-
tions. Then, KNIGHT utilizes interaction rules R and dataflow
graph G to determine whether b is state-dependent (line 10-
17). Note that, KNIGHT only considers the preceding blocks of
b, as these blocks can affect the input data of b. In other words,
only the interactions between them can affect the internal state
σ of b. Moreover, KNIGHT selects the corresponding rules
in accordance with the type of b to determine whether it is
state-dependent. Finally, KNIGHT appends the identified state-
dependent blocks into B̂ for further optimization.

C. Loop Reshaping

To eliminate redundant calculations within loop-semantic
models, KNIGHT proposes an effective technique, called Loop
Reshaping, to ensure the efficiency of the generated code. The
key idea is to identify blocks associated with internal state
calculations by analyzing the connections of state-dependent
blocks. Subsequently, KNIGHT can discern blocks irrelevant to
internal state calculations and relocate them outside the loop
semantics, thereby enhancing the overall performance.

Specifically, KNIGHT classifies the blocks within the target
model into three distinct categories based on the connections
of state-dependent blocks for thorough analysis. 1 Preceding
Blocks Bp. These blocks are connected, either directly or
indirectly, to the inports of state-dependent blocks B̂, thereby
providing essential data for their execution. The current and
previous states of these state-dependent blocks B̂ rely on
these preceding blocks Bp. As a result, the calculation of
these preceding blocks Bp should be maintained within loop
semantics. 2 Subsequent Blocks Bs. These blocks have
connections, either directly or indirectly, to the outports of the
state-dependent blocks B̂, from which they obtain the data
needed for their execution. As they are not state-dependent,
their execution results are solely determined by the final state
of state-dependent blocks B̂. Therefore, subsequent blocks Bs

can be effectively relocated outside the loop semantics for
execution. 3 Irrelevant Blocks Bi. These blocks have no
direct or indirect connection to the inports and outports of the
state-dependent blocks B̂. They repeat the same calculations
within loop semantics, and therefore can be relocated, similar
to subsequent blocks Bs.

Forward Inference. The goal of forward inference is to
identify the preceding blocks Bp of state-dependent blocks
B̂. Algorithm 2 presents the overall procedure. First, KNIGHT
utilizes a stack to preserve state-dependent blocks B̂ obtained
previously, and initializes the preceding blocks Bp as a NULL
set (line 2-3). Then, KNIGHT iteratively pops the front element
of stack to identify its preceding blocks until it is empty
(line 4-6). Specifically, for each obtained block b, KNIGHT
determines whether b falls within the loop semantics, as blocks
outside the loop semantics do not need to be relocated (line
7). In other words, KNIGHT determines if b is within a loop-
semantic subsystem s, i.e., if there exists a loop-semantic
subsystem s, such that b ∈ Bs. If so, KNIGHT performs
dataflow analysis on each inport i of b to identify the data
source block source (line 9-10). This can be achieved by
analyzing the corresponding connection in the model, as a
connection defines both the data source block and the data

Algorithm 2: Forward Inference
Input: G: Dataflow graph of target model

B̂ : State-dependent blocks
Output: Bp: Preceding blocks

1 Function ForwardInference(G, B̂):
2 Bp ← ∅
3 stack ← B̂
4 while stack ̸= ∅ do
5 b← stack.top()
6 stack.pop()
7 if b is in loop semantic then
8 // traverse each inport of block b
9 for i ∈ b.I do

10 source← G.findSourceBlock(i)
11 stack.push(source)
12 Bp.append(source)

13 return Bp

14 End Function

destination block. For instance, consider the model shown in
Figure 1a. By analyzing the connection related to the “U” port
of the Assign block, KNIGHT can determine the data source
block is Selector block. In this way, KNIGHT can identify
all the preceding blocks of b, and appends them into Bp.

Blocks Relocating. With the preceding blocks identified,
KNIGHT can easily obtain the subsequent blocks and irrelevant
blocks, and then relocate them outside the loop semantic.
First, KNIGHT employs a topological-based method to obtain
the translation sequence for the target model. It defines the
translation order of each block in code generation. In this
way, KNIGHT is able to identify the first block after the end
position of the loop semantic. After that, KNIGHT relocates
both the subsequent blocks and irrelevant blocks outside the
loop semantic. Specifically, KNIGHT moves the position of
these blocks in the translation sequence before the identified
first block. Note that, in the process, KNIGHT only changes
the translation order of these blocks without modifying any
other critical contents, especially the data relationship.

We take the example shown in Figure 3 to illustrate the pro-
cess of blocks relocating in detail. Each block inside the model
is indicated by a circular marker, while the For-Iterator
subsystem (loop semantic) is surrounded by dashed lines.
First, KNIGHT identifies the state-dependent block (Assign
block with orange marker) by the forward inference. Then,
KNIGHT obtains the translation sequence of the model by
the topological method, i.e., block 1 to block 11 , and then
identifies the first block after the end position of the loop
semantic, i.e., block 11 . It should be emphasized that the
lines in the translation sequence only represent the order of
block translation and do not correspond to the connections in
the dataflow graph. Finally, KNIGHT relocates the subsequent
blocks and irrelevant blocks (blocks with green marker) out-
side the loop semantic (before block 11 ).

Semantic-Aware Code Generation. For the relocated
blocks, it is essential to maintain the critical modeling seman-
tics, thereby ensuring the correctness of the generated code.
First, KNIGHT should maintain the connections within the
dataflow graph for relocated blocks. These connections are
essential as they determine the data sources for blocks. For



8

1 1
1

3

2

4

5 7

6

8

9
10

11

: State-Dependent block7

1 2 3 4 5 6 7 8 9

Translation Sequence

10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 7 6 8 9 10 11

Forward Inference

Blocks Relocating

For-iterator Subsystem

For-iterator Subsystem

For-iterator Subsystem

: Preceding blocks : Other blocksInteraction-Oriented
Analysis

1
In

Out

1

For
0 : N-1

For-Iterator

Assign

Y0

U

Idx

O

255

Assign

White

0

Black

Switch

img

Select

Idx

Y

U

Selector

(64)

(32)

(1)

(1)

(64) (64)

(1)

(1)

For-Iterator Subsystem

Fig. 3: An example illustrates the process of blocks relocating in detail. Each block is indicated by a circular marker, while
the For-Iterator subsystem is surrounded by dashed lines. The translation sequences represent the translation order of
each block during code generation.

example, in Figure 3, the connection between Assign block
and Switch block defines the data source of the Switch
block, and is preserved after relocating. Then, the translation
sequence between relocated blocks should be maintained.
This ensures that the relocated block is executed only after
obtaining the required data. For instance, in Figure 3, after
relocating, the translation sequence between block 6 , block
8 , and block 9 is constant. Finally, the specific functionalities
of each relocated block are recorded, and the corresponding
code will be generated in accordance with these functionalities
during code generation.

Code Synthesis. In KNIGHT, the process of generating code
for blocks within the dataflow graph is similar to Simulink
Embedded Coder and DFSynth. Firstly, KNIGHT employs a
topology-based approach to obtain the translation sequence
of the target model. For each block, KNIGHT defines the
corresponding DLL (Dynamic Link Library) to generate the
appropriate code. Note that, blocks of the same type can
exhibit varying details, resulting in differences in the generated
code. For example, the code generated for Add block varies
depending on the input type (e.g., float versus double). There-
fore, KNIGHT adjusts essential parameters within the DLL
files to capture the specific code requirements. Subsequently,
the generated code of each block is synthesized together in
accordance with the translation sequence.

V. IMPLEMENTATION

We have developed KNIGHT1 in C++, consisting of 26,142
lines of code. KNIGHT supports code generation for a wide
range of blocks, such as the math operation blocks, matrix
operation blocks, delay blocks, and complex blocks, which
are frequently used in various embedded scenarios. For each
block, we have crafted corresponding DLL files for code
generation in accordance with the data type, inputs/outputs,
and functionalities of the target actor. Besides, for blocks
with internal states, we have designed the specific interaction
rules to determine if they are state-dependents. These rules are
maintained in external files to support cross-architectures.

1The implementation, benchmark models, and the results are represented
at the repository (https://github.com/YzhDDDing/Knight).

VI. EVALUATION

Experiments Setup: We evaluated the performance of
KNIGHT on a benchmark of 8 commonly used loop-semantic
Simulink models collected from both academia and industry
[32], [13], as shown in Table II. These models contain 243
blocks and 28 subsystems on average, and are employed in
real-world embedded scenarios. To investigate the effective-
ness of our approach, we compared KNIGHT with three state-
of-the-art code generators, the official Simulink Embedded
Coder [10], DFSynth [12], and HCG [11]. The comparison
experiments were conducted across different compilers and
architectures to validate the practicality of KNIGHT. Besides,
we collected other important indicators among these code
generators to measure the overhead of KNIGHT, including
code length and memory usage. Since Simulink Embedded
Coder is a built-in tool for Simulink, we use Simulink as the
abbreviation in the following experimental content.

TABLE II: Description of benchmark models.

Model Description #Subsystem #Block
CPUTask AutoSAR CPU task dispatch system 27 215
Diffsion Thermal diffusion simulation model 6 44
FMTM Factory Multi-point Temperature Monitor 42 301
HighPass HighPass filter model 9 63
Hybrid Hybrid filter model 17 114
LANSwitch LAN Switch controller 39 409
LEDLC LED matrix load control 29 232
RAC Robotic arm controller 57 565

A. Evaluation on x86 Platform

To demonstrate the performance of the generated code by
KNIGHT, we conducted the experiment on the benchmark
models. The experiment environment was an industrial ma-
chine (Win11, AMD Ryzen 7 5800X, 32GB memory). The
generated code was compiled by C-Compilers, i.e., GCC
(v11.3.0) and Clang (v14.0.6), employing various optimization
levels including -O2, and -O3. Besides, to eliminate statistical
errors, each of the generated code is repeatedly executed
5,000,000 times to obtain an average result.

Comparison experiment using -O0 flag. Developers tend
to use -O0 as the compilation flag for code traceability



9

in safety-critical embedded scenarios. Consequently, we first
conducted the comparison experiment using this flag. Table III
shows the experiment results under -O0 compilation flag. For
comparison experiments compiled with GCC, the execution
duration of KNIGHT is 21.32× faster than Simulink, 19.40×
faster than DFSynth, and 18.16× faster than HCG on average.
As for compiling using Clang, the execution duration of
KNIGHT is 18.34× faster than Simulink, 17.78× faster than
DFSynth, and 16.20× faster than HCG on average. The statis-
tics indicate that KNIGHT achieves significant performance
improvements compared to other code generators.

Simulink outperforms DFSynth and HCG on some models,
such as Diffsion model, but still not as good as KNIGHT.
Its optimization technique for expression folding is very pow-
erful, enabling the reuse of block outports and thereby min-
imizing many intermediate variables. Meanwhile, Simulink
generates code for subsystems using an inline approach, while
KNIGHT, DFSynth, and HCG generate separate functions
for these subsystems. This approach somewhat reduces the
overhead of function calls but decreases the reusability and
readability of the generated code. The performance of the
generated code by DFSynth is relatively limited, mainly be-
cause they lack effective optimization techniques for data-
intensive models. It is mainly because DFSynth mainly focuses
on generating concise code for complex branch blocks inside
the model, thus lacking effective optimization techniques for
loop-semantic models. As for HCG, it synthesizes appropriate
SIMD instructions for computing blocks and achieves per-
formance improvement on part of models, for example, the
LANSwitch model. However, for other models, HCG does
not perform very well, falling behind other code generators.
This is because most benchmark models contain decision-
related blocks, for example, IF subsystem, and HCG is unable
to effectively synthesize appropriate SIMD instructions for
such blocks. Consequently, the code generated by HCG often
exhibits a combination of SIMD and regular instructions. This
leads to frequent data exchanges between memory and vector
registers, ultimately resulting in unsatisfactory performance.

TABLE III: Comparison of the code execution duration on x86
with -O0 flag.

Model Compiler Simulink DFSynth HCG KNIGHT

CPUTask GCC 6.28s 26.81s 27.01s 3.03s
Clang 7.95s 31.12s 30.39s 3.45s

Diffsion GCC 6.26s 34.07s 28.41s 2.98s
Clang 5.72s 37.77s 31.33s 3.24s

FMTM GCC 39.38s 11.41s 11.34s 0.57s
Clang 40.54s 11.48s 11.61s 0.71s

HighPass GCC 2.10s 7.41s 5.49s 0.58s
Clang 2.20s 8.18s 5.86s 0.57s

Hybrid GCC 1.07s 3.77s 3.77s 0.31s
Clang 1.14s 4.13s 4.10s 0.29s

LANSwitch GCC 43.79s 34.97s 31.30s 0.81s
Clang 45.16s 36.12s 29.44s 1.00s

LEDLC GCC 21.54s 88.57s 90.16s 3.66s
Clang 22.99s 92.43s 94.24s 4.37s

RAC GCC 39.02s 29.12s 28.39s 1.29s
Clang 41.51s 29.77s 29.43s 1.53s

Compared to other code generators, KNIGHT proactively
leverages critical information within the model, e.g., block
functionalities and connections. In this way, KNIGHT can an-
alyze interactions between blocks to identify state-dependent
blocks. This process reveals a substantial amount of redundant
calculations, and KNIGHT can relocate them outside the loop
semantic for performance improvement. Other code gener-
ators, even including state-of-the-art compilers, are unable
to achieve this. Therefore, KNIGHT outperforms other code
generators. Besides, we found that KNIGHT achieves excellent
results on some benchmark models. For example, for the
FMTM model, KNIGHT is 60.20× faster than Simulink, 20.05×
than DFSynth, and 19.93× than HCG, respectively. Through
detailed analysis of this model, we found that, compared
to other models, it contains more calculation-related blocks
rather than decision-related blocks. In other words, redundant
calculations have a greater impact on this model, allowing
KNIGHT to achieve significant improvement. Furthermore, for
all models under -O0 compilation flag, the code compiled by
GCC performs better than the code compiled by Clang.

Comparison experiment using -O2 flag. Due to stability
and reliability, the majority of embedded software is compiled
with -O2 compilation flag. Consequently, we also conducted a
comparison experiment using this flag. Table IV shows the ex-
periment results under -O2 compilation flag. For comparison
experiments compiled with GCC, the execution duration of
KNIGHT is 12.60× faster than Simulink, 23.81× faster than
DFSynth, and 16.68× faster than HCG on average. As for
compiling using Clang, the execution duration of KNIGHT is
11.66× faster than Simulink, 11.35× faster than DFSynth, and
12.60× faster than HCG on average.

TABLE IV: Comparison of the code execution duration on
x86 with -O2 flag.

Model Compiler Simulink DFSynth HCG KNIGHT

CPUTask GCC 1.41s 5.18s 4.93s 0.61s
Clang 1.13s 1.44s 1.44s 0.31s

Diffsion GCC 1.97s 11.16s 4.00s 0.50s
Clang 0.84s 2.10s 1.89s 0.21s

FMTM GCC 3.62s 4.00s 3.90s 0.11s
Clang 1.90s 0.53s 0.54s 0.08s

HighPass GCC 0.84s 2.43s 1.07s 0.15s
Clang 0.43s 0.53s 0.89s 0.04s

Hybrid GCC 0.38s 1.17s 1.22s 0.10s
Clang 0.18s 0.27s 0.27s 0.03s

LANSwitch GCC 3.98s 8.88s 6.19s 0.20s
Clang 2.11s 3.03s 2.83s 0.11s

LEDLC GCC 5.55s 11.71s 9.01s 0.51s
Clang 3.67s 3.56s 4.61s 0.31s

RAC GCC 5.20s 6.88s 3.43s 0.24s
Clang 2.31s 1.30s 1.36s 0.16s

Compared to other code generators, the statistics show
that KNIGHT can still achieve substantial performance im-
provements. While state-of-the-art compilers employ elaborate
optimizations under -O2 compilation flag, such as function
inline and loop align, these optimizations are unable to
eliminate the redundant calculations addressed by KNIGHT.
Moreover, compared to the aforementioned evaluation under



10

-O0 compilation flag, we found that Simulink outperforms
DFSynth and HCG in all benchmark models. It indicates that
the optimization techniques employed by Simulink are effec-
tive under -O2 compilation flag. Besides, compared with the
aforementioned experiments, the code compiled with Clang
outperforms the code compiled by Clang. This is probably
because Clang implements and employs more optimizations
under -O2 compilation flag compared to GCC.

Comparison experiment using -O3 flag. To validate
the effectiveness of KNIGHT under high-level compiler op-
timizations, we further conducted the comparison experiment
using -O3 compilation flag. Table V shows the experiment
results. For comparison experiments compiled with GCC, the
execution duration of KNIGHT is 16.07× faster than Simulink,
9.09× faster than DFSynth, and 11.19× faster than HCG on
average. As for compiling using Clang, the execution duration
of KNIGHT is 9.63× faster than Simulink, 9.09× faster than
DFSynth, and 11.17× faster than HCG on average. The data
reveals that under the high-level optimization, KNIGHT still
achieves a significant performance improvement. It shows
that the redundant operations eliminated by KNIGHT cannot
be effectively addressed by the sophisticated optimization
techniques implemented by compilers, demonstrating the ef-
fectiveness and practicability of our approach.

TABLE V: Comparison of the code execution duration on x86
with -O3 flag.

Model Compiler Simulink DFSynth HCG KNIGHT

CPUTask GCC 1.11s 1.44s 2.04s 0.28s
Clang 1.11s 1.41s 1.55s 0.30s

Diffsion GCC 0.78s 1.62s 2.52s 0.21s
Clang 0.82s 2.00s 1.89s 0.30s

FMTM GCC 3.72s 0.72s 0.74s 0.11s
Clang 1.84s 0.59s 0.57s 0.08s

HighPass GCC 0.79s 0.55s 0.97s 0.06s
Clang 0.44s 0.53s 0.88s 0.04s

Hybrid GCC 0.36s 0.32s 0.32s 0.05s
Clang 0.18s 0.27s 0.27s 0.03s

LANSwitch GCC 3.98s 1.96s 1.79s 0.13s
Clang 2.15s 2.44s 2.89s 0.13s

LEDLC GCC 1.06s 2.63s 3.41s 0.24s
Clang 1.16s 3.64s 4.67s 0.29s

RAC GCC 5.32s 2.03s 2.35s 0.17s
Clang 2.42s 1.24s 1.34s 0.17s

Compared to the aforementioned evaluation under -O2
compilation flag, we found that DFSynth outperforms
Simulink and HCG in benchmark models. It indicates that
generating a separate function for each subsystem is more
efficient under -O3 compilation flag. This prompts compilers
to optimize each function individually, and releases the analyt-
ical burden of the context, compared to the large inline code
blocks. Additionally, under -O3 compilation flag, compilers
are highly efficient at minimizing the overhead of function
calls. Moreover, compared to the aforementioned experimental
results, the efficiency of the code compiled with GCC shows
a marked enhancement. By analyzing the specific assembly
code, we found that GCC adopts effective and aggressive
optimization methods to speed up the execution, such as loop

unrolling and SIMD instructions, decreasing the performance
gap with Clang. The code generated by KNIGHT similarly
benefits from these advancements.

B. Evaluation on Other Platform

To demonstrate the effectiveness of KNIGHT on different
architectures, we also conducted repetitive experiments on an
embedded machine with an ARM processor (Linux v6.1.21,
ARM Cortex A72, 8GB memory), using GCC (v11.3.0) and
Clang (v14.0.6) compilers. The overall results on ARM are
shown in Figure 4. The red line marks the execution duration
of the generated by KNIGHT, while the box represents the
performance improvement achieved by KNIGHT compared to
the corresponding code generator. For comparison experiments
compiled with GCC, the execution duration of KNIGHT is
22.59× faster than Simulink, 20.99× faster than DFSynth,
and 17.69× faster than HCG on average, across different op-
timization levels. As for compiling using Clang, the execution
duration of KNIGHT is 20.84× faster than Simulink, 19.03×
faster than DFSynth, and 16.25× faster than HCG on average,
across different optimization levels. This demonstrates the
effectiveness of KNIGHT on the embedded platform.

Simulink DFSynth HCG

20

40

60

80

100

120

1

Execution Improvement on GCC
-O0
-O2
-O3

Simulink DFSynth HCG

20

40

60

80

100

120

1

Execution Improvement on Clang
-O0
-O2
-O3

Fig. 4: The comparison experiments on ARM architecture. The
red line is the baseline, representing the execution duration of
KNIGHT. The box represents the performance improvement
achieved by KNIGHT, compared to other code generators.

Compared to experiments on the x86 architecture, we
observed that KNIGHT achieves better performance improve-
ment. This is mainly because embedded devices have certain
disparities in performance and hardware optimization com-
pared to conventional devices. For example, while the AMD
processor used previously supports 512-bit SIMD instructions,
the ARM processor in the embedded device only supports 128-
bit SIMD instructions. In addition, modern processors support
speculative execution, which allows the execution of required
operations in advance, whereas embedded processors do not
support this technique. Consequently, for embedded devices
with limited performance, the main performance limitation is
related to the logic of the generated code. KNIGHT benefits
from this and thereby achieves higher performance improve-
ment. Furthermore, we analyzed the outliers in Figure 4. The
main outliers of DFSynth and HCG are the LANSwitch
model. As mentioned above (Section VI-A), this model con-
tains more calculation-related blocks rather than decision-
related blocks. Therefore, redundant calculations within this
model have a greater impact. Consequently, KNIGHT achieves
significant performance improvement on this model. In the
case of the experiments conducted on Simulink, no outliers
were observed.



11

C. Evaluation on Memory Usage

We further conducted experiments on memory usage among
the code generated by different code generators, to fully
evaluate our approach. This metric is important, especially on
resource-constrained embedded devices.

As shown in Table VI, the code generated by different
code generators requires approximately the same amount of
memory for execution. Since they use the same number
of variables and do not utilize memory allocation functions
such as malloc, calloc, and new, the heap size among
different compiled executable files remains nearly identical.
Stack memory is automatically managed by the compiler and
all the code is compiled with the same compiler, thus the stack
size is also almost the same. Moreover, due to the relatively
small size of the target executable files, other metrics do not
have a significant impact on memory usage, such as data
segment and text segment. Consequently, the memory usage
of the generated code is nearly identical. This demonstrates
that KNIGHT improves code performance without incurring
substantial additional memory overhead.

TABLE VI: Comparison experiments on memory usage.

Model Memory Usage (kB)
Simulink DFSynth HCG KNIGHT

CPUTask 844 824 824 824
Diffsion 800 800 800 800
FMTM 772 772 776 772
HighPass 804 800 804 804
Hybrid 800 756 760 756
LANSwitch 792 800 800 800
LEDLC 788 792 792 792
RAC 780 780 772 772

D. Comparison with Polyhedral Model Optimizations

The polyhedral model is a high-level mathematical model
within compilers, mainly used for loop optimization and
parallelization. This model can efficiently analyze and trans-
form loop nesting structures in code by abstracting loop
structures into polyhedra. To determine if polyhedral model
optimizations can eliminate redundant calculations, we further
conducted the comparison experiments and enabled polyhedral
model optimizations under -O3 flag: -fgraphite for GCC
and -mllvm -polly for Clang. For code generated by
Simulink, DFSynth, and HCG, we enabled these specific flags;
for the code generated by KNIGHT, we only enabled -O3 flag.
The experiments were carried out on the previously mentioned
x86 industrial machine.

Table VII shows the experiment results. For comparison
experiments compiled with GCC, the execution duration of
KNIGHT is 15.52× faster than Simulink, 8.79× faster than
DFSynth, and 11.56× faster than HCG on average. For
comparison experiments compiled with Clang, the execution
duration of KNIGHT is 9.73× faster than Simulink, 9.97×
faster than DFSynth, and 11.82× faster than HCG on average.
We found that, compared to the results using -O3 flag, the
generated code for most benchmark models is a little faster by
enabling polyhedral model optimizations. However, for some
models, the performance of the generated code significantly

TABLE VII: Comparison of the code execution duration on
x86 with polyhedral model optimizations.

Model Compiler Simulink DFSynth HCG KNIGHT

CPUTask GCC 1.06s 1.36s 1.90s 0.28s
Clang 1.10s 2.86s 2.89s 0.30s

Diffsion GCC 0.75s 1.54s 2.40s 0.21s
Clang 0.77s 2.00s 1.88s 0.30s

FMTM GCC 3.72s 0.67s 0.67s 0.11s
Clang 1.75s 0.52s 0.52s 0.08s

HighPass GCC 0.72s 0.52s 0.92s 0.06s
Clang 0.42s 0.54s 0.89s 0.04s

Hybrid GCC 0.33s 0.30s 0.30s 0.05s
Clang 0.17s 0.20s 0.20s 0.03s

LANSwitch GCC 3.67s 1.83s 1.69s 0.13s
Clang 2.00s 2.34s 2.65s 0.13s

LEDLC GCC 0.99s 3.03s 5.03s 0.24s
Clang 1.10s 3.27s 4.76s 0.29s

RAC GCC 5.47s 1.83s 2.19s 0.17s
Clang 2.44s 1.25s 1.09s 0.17s

decreased. For example, consider CPUTask model, the code
generated by DFSynth and HCG compiled by Clang is 2.03×
slower and 1.87× slower. Through performance analysis of
the generated code, we found that after using polyhedral
model optimizations, control logic constitutes more execution
duration, which because the main reason for the performance
decline. Besides, experiment results illustrate that although
enabling polyhedral model optimizations, KNIGHT still can
achieve significant performance improvement.

VII. DISCUSSION

Extensibility of KNIGHT. Currently, KNIGHT supports
code generation not only for x86 and ARM architectures,
but also supports optimized code for other architectures. The
fundamental reason for performance improvement comes from
avoiding redundant calculations. Therefore, the code employed
on other architectures will also benefit from our approach. At
present, the benchmark models in experiments are widely used
industry models. KNIGHT handles these models effectively
and achieves significant performance improvement. However,
for more complex models, e.g., those containing over 10000
blocks, identifying redundant operations becomes exceedingly
complex and time-consuming during code generation for anal-
ysis. A feasible approach is to treat some complex subsystems
within loop-semantic subsystems as state-independent blocks
and not subject them to further analysis, thus reducing the
burden of code generation. This represents a trade-off between
tool efficiency and code performance.

KNIGHT supports loop reshaping for Simulink models to
enhance the performance of the generated code. The code
generation part of KNIGHT can be extended to models con-
structed by other model-driven design tools. Different model-
driven design tools have their representations for constructed
models. Therefore, KNIGHT requires to identify the differences
between their representations and those of Simulink models,
and then parse them into runtime data structures for analysis.
As loop reshaping of KNIGHT, this optimization technique
can also applied to other model-driven design tools, but it



12

1 void binarize(uint8_t In[32], 
2     uint8_t Out[64])
3 {
4 int i;
5 int iter;
6 uint8_t Assign[64];
7   uint8_t Switch[64];
8
9   memcpy(&Assign[0], &img[0],
10 sizeof(uint8_T) << 6U);
11
12 for (iter = 0; iter < 32; iter++) {
13
14 Assignment[iter] = Inport[iter];
15 for (i = 0; i < 64; i++) {
16 if (Assignment[i] > threshold) {
17 Switch[i] = MAX_uint8_T;
18 } else {
19 Switch[i] = 0U;
20 }
21 }
22 }
23
24 memcpy(&Out[0], &Switch[0], 
25 sizeof(uint8_t) << 6U);
26 }

... Others ...

.LBB0_1: 
movups xmm0, xmmword ptr [r8]
movups xmm1, xmmword ptr [r8 + 16]
movups xmm2, xmmword ptr [r8 + 32]
movups xmm3, xmmword ptr [r8 + 48]
movaps xmmword ptr [rsp - 24], xmm3
movaps xmmword ptr [rsp - 40], xmm2
movaps xmmword ptr [rsp - 56], xmm1
movaps xmmword ptr [rsp - 72], xmm0
.LBB0_3: 
mov al, byte ptr [rsi + rcx]
mov byte ptr [rsp + rcx - 72], al
xor edi, edi
.LBB0_4:
cmp byte ptr [rsp + rdi - 72], -123
mov eax, 0
adc al, -1
mov byte ptr [rdx + rdi], al
add rdi, 1
cmp rdi, 64
jne .LBB0_4
add rcx, 1
cmp rcx, 32
jne .LBB0_1
... Others ...

... Initialization ...
vmovdqu ymm1, ymmword ptr [rsp - 72]
vmovdqa ymm0, ymmword ptr [rip + .LCPI0_0] 
vpmaxub ymm2, ymm1, ymm0
vpcmpeqb ymm1, ymm1, ymm2
vmovdqu ymmword ptr [rdx], ymm1
vmovdqu ymm1, ymmword ptr [rsp - 40]
vpmaxub ymm2, ymm1, ymm0
vpcmpeqb ymm1, ymm1, ymm2
vmovdqu ymmword ptr [rdx + 32], ymm1
mov eax, 1
.LBB0_1: 
movzx ecx, byte ptr [rsi + rax]
mov byte ptr [rsp + rax - 72], cl
vmovdqu ymm1, ymmword ptr [rsp - 72]
vpmaxub ymm2, ymm1, ymm0
vpcmpeqb ymm1, ymm1, ymm2
vmovdqu ymmword ptr [rdx], ymm1
vmovdqu ymm1, ymmword ptr [rsp - 40]
vpmaxub ymm2, ymm1, ymm0
vpcmpeqb ymm1, ymm1, ymm2
vmovdqu ymmword ptr [rdx + 32], ymm1
add rax, 1
cmp rax, 32
jne .LBB0_1
... Others ...

(b) Original Code(a) Compiled with –O1 (c) Compiled with –O3

1 void binarize(uint8_t In[32], uint8_t Out[64]) {
2 int i;
3 int j;
4 uint8_t Assign[64];
5 memcpy(&Assign[0], &img[0], sizeof(uint8_T) << 6U);
6 for (i = 0; i < 32; i++) {
7 Assign[i] = In[i];
8 for (j = 0; j < 64; j++) {
9 Switch[j] = Assign[j] > threshold ? 255U : OU;
10 }
11 }
12 for (i = 0; j < 64; i++) {
13 Switch[i] = Assign[i] > threshold ? 255U : OU;
14 }
15   memcpy(&Out[0], &Switch[0], sizeof(uint8_t) << 6U);
16 }

1 void binarize(uint8_t In[32], uint8_t Out[64]) {
2 int i;
3 int j;
4 uint8_t Assign[64];
5 memcpy(&Assign[0], &img[0], sizeof(uint8_T) << 6U);
6 for (i = 0; i < 32; i++) {  
7 Assign[i] = In[i];
8 for (j = 0; j < 64; j++) {
9 Switch[j] = Assign[j] > threshold ? 255U : OU;
10 }
11 }
12
13
14
15   memcpy(&Out[0], &Switch[0], sizeof(uint8_t) << 6U);
16 }

(b) Original Code (c) Optimized Code

Fig. 5: The compiled assembly code. The left snippet is compiled at -O1 flag. The right snippet is compiled at -O3 flag.
The corresponding assembly code of redundant calculations is highlighted with light orange. This shows that the sophisticated
optimization techniques employed by GCC cannot effectively address the redundant calculations in the generated code.

should meet the following conditions. First, loop-semantic
subsystems supported by these tools should be open, similar
to for statement in C. The loop-semantic subsystems need to
support execution for blocks with different data dimensions.
Second, these tools should support blocks that contain internal
states. Once the above two conditions are violated, it becomes
difficult for loop reshaping to effectively identify redundant
operations. For example, SCADE supports loop iterators for
modeling. However, the semantics of these iterators are strict.
For instance, map iterator in SCADE strictly requires that
each iteration accesses the corresponding element, and the data
dimensions of blocks within the iterator are consistent. As a
result, the redundant calculations found in Simulink models
do not occur in SCADE models, preventing KNIGHT from
effectively optimizing SCADE models.

Compiler Optimizations. The inherent inefficiency of
the generated code makes it difficult for compilers to em-
ploy aggressive optimization techniques or achieve satisfac-
tory results. For instance, consider the code generated by
Simulink Embedded Coder (Figure 5b). The left snippet
is the assembly code compiled by GCC under -O1 flag,
while the right snippet is the assembly code under -O3
flag with polyhedral model optimizations. For the assem-
bly code under -O3 flag, GCC utilizes the loop unrolling
technique to unroll the inner loop statement (highlighted
with light orange in Figure 5b), and splits the inner loop
statement into two parts for optimization. Then, it utilizes
SIMD instructions, such as vpmaxub and vpcmpeqb, to
speed up the calculation and improve overall performance.
However, the optimized assembly code still requires repeat-
ing the above instructions 32 times (see cmp and jne in-
struction), resulting in executing time-consuming redundant
instructions. Compilers have implemented numerous loop-
related optimizations, such as -floop-unroll-and-jam
and -fmove-loop-invariants. However, to address the

aforementioned issues, compilers must strategically combine
these optimization techniques. The complex model semantics
pose challenges to compilers in deploying these aggressive
optimizations. For instance, the intricate data types and con-
nections make it difficult for compilers to identify the invariant
variables within the loop semantic.

In fact, existing loop-related optimizations can be em-
ployed in code generation for performance improvement,
and KNIGHT specifically targets the elimination of redundant
calculations caused by state-dependent blocks. For example,
loop fusion can merge multiple loops to avoid repeated loop
condition checks. However, the effective application of these
optimization techniques necessitates the targeted utilization of
model semantics to achieve better performance and ensure the
correctness of the generated code. Our future work will focus
on exploring strategies to effectively integrate model semantics
with these optimizations during code generation.

Code Correctness. We have employed a series of effec-
tive approaches to ensure code correctness. First, for each
model, we randomly generate numerous test cases to the
code generated by KNIGHT, and compare them with results
derived from model simulations. Additionally, for benchmark
models, we have verified the consistency between the code
and simulation results, confirming their reliability. Second, in
loop reshaping, KNIGHT strategically relocates the subsequent
blocks and irrelevant blocks outside the loop semantic to
avoid redundant calculations. For subsequent blocks, if they
cannot be relocated, it means either they are related to the
state calculation of state-dependent blocks, or they are state-
dependent blocks. In such cases, KNIGHT will not identify
these blocks as subsequent blocks, which is contrary to the
definition (Section IV-C). Similarly, for irrelevant blocks,
if they cannot be relocated, it implies that they are state-
dependent blocks, which is also contrary to the definition
(Section IV-C).



13

Optimization Approaches. To eliminate redundant cal-
culations, KNIGHT relocates the subsequent and irrelevant
blocks outside the loop semantics, while maintaining their
connections within the dataflow graph. Another approach
for implementing the aforementioned optimizations is model
rewriting. Specifically, after identifying optimizable blocks,
the model files are rewritten to relocate these blocks, using
Simulink Embedded Coder for code generation. However,
this method presents several challenges. For instance, model
rewriting must preserve model semantics to ensure correctness,
and incorrect modifications can result in model files not
opening properly. Moreover, implementing KNIGHT during
code generation facilitates the integration of additional loop-
related optimizations.

Threats to Validity. At present, KNIGHT identifies internal-
state blocks within Simulink models and designs correspond-
ing interaction rules to determine whether they are state-
dependent. Indeed, Simulink offers specialized blocks for
domain-specific modeling, such as powertrain blockset, which
may contain interaction rules for identifying state-dependent
blocks not yet covered by Knight. However, KNIGHT supports
“commonly-used blocks” in Simulink, including but not limited
to math operation blockset, matrix operation blockset, DSP
system blockset, logic blockset, etc, ensuring the practicality
and effectiveness of KNIGHT. Enriching interaction rules for
these domain-specific blocks is our future work. Moreover, for
blocks within the loop-semantic, KNIGHT generates separate
for statements to represent their functionalities. While this
approach leads to increased lines of code and could potentially
incur overhead for loop boundary judgments, our empirical
evaluation suggests that, with compiler optimizations at -O2
flag or higher, this overhead does not adversely affect ex-
ecution duration, due to loop-fusion optimizations, such as
ftree-loop-fusion.

VIII. RELATED WORK

Recently, many research and commercial tools have made
remarkable efforts to improve the performance of the gen-
erated code. Specifically, the built-in Simulink Embedded
Coder, specialties in generating production-quality code that
can be directly deployed to the target hardware platform. It
employs various high-level optimization techniques to improve
the performance of the generated code, including expression
folding, variable reuse, SIMD instruction replacement, etc.
In academics, some works have made some efforts to im-
prove code efficiency. DFSynth concentrates on the dataflow
analysis, scheduling, and code synthesis steps of the code
generation process [12]. It is capable of generating well-
structured code for Ptolemy-II and Simulink models. Initially,
DFSynth disassembles the dataflow model into blocks embed-
ded within if-else or switch-case statements based on schedule
analysis, effectively bridging the semantic gap between the
code and the original dataflow model. Subsequently, DFSynth
designs tailored templates for each block and synthesizes well-
structured, executable C and Java code using sequential code
assembly. HGC [11], another approach, emphasizes the paral-
lel acceleration of the code generated. Based on adaptive pre-
calculation on input scales, HCG selects optimal implementa-

tions for intensive computing blocks on different scenarios. For
batch computing blocks, HCG synthesizes appropriate SIMD
instructions using iterative dataflow graph mapping.

IX. CONCLUSION

In this paper, we propose KNIGHT, an efficient code gen-
erator for loop-semantic Simulink models with loop shaping.
For the target Simulink model, KNIGHT identifies blocks with
internal states, and implements the specific interaction rules to
determine state-dependent blocks. Then, for state-dependent
blocks, KNIGHT conducts forward inference to obtain their
preceding blocks, which influence the internal state calcula-
tions. After that, KNIGHT isolates blocks that are optimizable
and irrelevant to internal states, and strategically relocates
them outside the loop semantics. We evaluate the effectiveness
of KNIGHT on benchmark models across different compilers
and architectures. Compared with the state-of-the-art code
generators Simulink Embedded Coder, DFSynth, and HCG,
the code generated by KNIGHT is 16.58× faster, 16.89× faster,
and 15.38× faster in terms of execution duration on average,
without incurring additional overhead of memory usage.

X. ACKNOWLEDGMENT

This research is sponsored in part by the National Key
Research and Development Project (No. 2022YFB3104000),
China Postdocoral Science Foundation (BX20230183,
2023M731954) and NSFC Program (No. 92167101,
62021002, 62372263).

REFERENCES

[1] Simulink and Matlab, Simulink Documentation, 2023, https://www.
mathworks.com/help/simulink/index.html.

[2] Y. Zhu, H. Hu, G. Xu, and Z. Zhao, “Hardware-in-the-loop simulation
of pure electric vehicle control system,” in 2009 International Asia
Conference on Informatics in Control, Automation and Robotics. IEEE,
2009, pp. 254–258.

[3] R. A. Faris, A. Ibrahim, M. Abdulwahid, M. Mosleh et al., “Optimiza-
tion and enhancement of charging control system of electric vehicle
using matlab simulink,” in IOP Conference Series: Materials Science
and Engineering, vol. 1105, no. 1. IOP Publishing, 2021, p. 012004.

[4] D. Christhilf and B. Bacon, “Simulink-based simulation architecture
for evaluating controls for aerospace vehicles (sarec-asv),” in AIAA
Modeling and Simulation Technologies Conference and Exhibit, 2006,
p. 6726.

[5] D. Hercog and K. Jezernik, “Rapid control prototyping using mat-
lab/simulink and a dsp-based motor controller,” International Journal
of Engineering Education, vol. 21, no. 4, p. 596, 2005.

[6] G. K. Adam, N. Petrellis, and L. T. Doulos, “Performance assessment
of linux kernels with preempt rt on arm-based embedded devices,”
Electronics, vol. 10, no. 11, p. 1331, 2021.

[7] S. L. Shrestha, S. A. Chowdhury, and C. Csallner, “Slnet: A redis-
tributable corpus of 3rd-party simulink models,” in Proceedings of the
19th International Conference on Mining Software Repositories, 2022,
pp. 237–241.

[8] S. Sankaranarayanan and G. Fainekos, “Simulating insulin infusion
pump risks by in-silico modeling of the insulin-glucose regulatory
system,” in International Conference on Computational Methods in
Systems Biology. Springer, 2012, pp. 322–341.

[9] Z. Su, D. Wang, Z. Yu, Y. Yang, Y. Jiang, R. Wang, W. Chang,
W. Li, A. Cui, and J. Sun, “Phcg: Optimizing simulink code generation
for embedded system with simd instructions,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 42,
no. 4, pp. 1072–1084, 2022.

[10] Simulink, Simulink Embedded Coder Documentation, 2023, https://
www.mathworks.com/solutions/embedded-code-generation.html.



14

[11] Z. Su, Z. Yu, D. Wang, Y. Yang, Y. Jiang, R. Wang, W. Chang,
and J. Sun, “Hcg: optimizing embedded code generation of simulink
with simd instruction synthesis,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, 2022, pp. 1033–1038.

[12] Z. Su, D. Wang, Y. Yang, Y. Jiang, W. Chang, L. Fang, W. Li, and
J. Sun, “Code synthesis for dataflow-based embedded software design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 1, pp. 49–61, 2021.

[13] Z. Yu, Z. Su, Y. Yang, J. Liang, Y. Jiang, A. Cui, W. Chang, and
R. Wang, “Mercury: Instruction pipeline aware code generation for
simulink models,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 11, pp. 4504–4515, 2022.

[14] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema, “Developing applications using model-driven design envi-
ronments,” Computer, vol. 39, no. 2, pp. 33–40, 2006.

[15] Y. Jiang, H. Zhang, H. Zhang, X. Zhao, H. Liu, C. Sun, X. Song, M. Gu,
and J. Sun, “Tsmart-galsblock: A toolkit for modeling, validation,
and synthesis of multi-clocked embedded systems,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 711–714.

[16] J.-M. Jézéquel, “Model driven design and aspect weaving,” Software &
Systems Modeling, vol. 7, pp. 209–218, 2008.

[17] Y. Jiang, H. Liu, H. Song, H. Kong, R. Wang, Y. Guan, and L. Sha,
“Safety-assured model-driven design of the multifunction vehicle bus
controller,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 10, pp. 3320–3333, 2018.

[18] D. Ameller, X. Franch, C. Gómez, S. Martı́nez-Fernández, J. Araújo,
S. Biffl, J. Cabot, V. Cortellessa, D. Méndez, A. Moreira et al., “Deal-
ing with non-functional requirements in model-driven development: A
survey,” IEEE Transactions on Software Engineering, 2019.

[19] T. Miyazaki and E. A. Lee, “Code generation by using integer-controlled
dataflow graph,” in 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1. IEEE, 1997, pp. 703–706.

[20] G. Berry, “Scade: Synchronous design and validation of embedded
control software,” in Next Generation Design and Verification Method-
ologies for Distributed Embedded Control Systems. Springer, 2007, pp.
19–33.

[21] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,” in
Readings in Hardware/Software Co-Design, ser. Systems on Silicon,
G. De Micheli, R. Ernst, and W. Wolf, Eds. San Francisco: Morgan
Kaufmann, 2002, pp. 527–543.

[22] P. Baldwin, S. Kohli, and E. A. Lee, “Modeling of sensor nets in ptolemy
ii,” in Proceedings of the 3rd international symposium on Information
processing in sensor networks. ACM, 2004, pp. 359–368.

[23] C. Brooks, E. A. Lee, and S. Tripakis, “Exploring models of computation
with ptolemy ii,” in 2010 IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS).
IEEE, 2010, pp. 331–332.

[24] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[25] Z. Su, D. Wang, Y. Yang, Z. Yu, W. Chang, W. Li, A. Cui, Y. Jiang, and
J. Sun, “Mdd: A unified model-driven design framework for embedded
control software,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[26] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee, “Compo-
sitionality in synchronous data flow: Modular code generation from
hierarchical sdf graphs,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 3, pp. 1–26, 2013.

[27] G. Zhou, M.-K. Leung, and E. A. Lee, “A code generation framework
for actor-oriented models with partial evaluation,” in International
Conference on Embedded Software and Systems. Springer, 2007, pp.
193–206.

[28] R. Grepl, “Real-time control prototyping in matlab/simulink: Review
of tools for research and education in mechatronics,” in 2011 IEEE
International Conference on Mechatronics. IEEE, 2011, pp. 881–886.

[29] A. Tewari, Automatic control of atmospheric and space flight vehicles:
design and analysis with MATLAB® and Simulink®. Springer, 2011.

[30] B. Gatos, I. Pratikakis, and S. J. Perantonis, “Adaptive degraded docu-
ment image binarization,” Pattern recognition, vol. 39, no. 3, pp. 317–
327, 2006.

[31] G. K. Adam, “Real-time performance analysis of distributed multi-
threaded applications in a cluster of arm-based embedded devices,”
International Journal of High Performance Systems Architecture, vol. 11,
no. 2, pp. 105–116, 2022.

[32] Z. Su, Z. Yu, D. Wang, Y. Yang, R. Wang, W. Chang, A. Cui, and
Y. Jiang, “Stcg: state-aware test case generation for simulink models,”
in 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE,
2023, pp. 1–6.

Zehong Yu received the B.S. degree in software
engineering from Southeast University in 2021. He
is pursuing a M.S.E. degree in software engineering
at Tsinghua University, Beijing, China. His research
interests are in the areas of model driven develop-
ment and embedded software engineering.

Yixiao Yang received the B.S. degree in soft-
ware engineering from Nanjing University, Nanjing,
China, in 2014. He received the Ph.D. degree in
software engineering from Tsinghua University, Bei-
jing, China. He is currently working as a assistant
researcher in the College of Information Engineer-
ing, Capital Normal University, Beijing, China. His
research interests include code completion, test case
generation, model driven design and their applica-
tions to industry.

Zhuo Su received the B.S. degree in software en-
gineering from Northeastern University, Shenyang,
China, in 2018, and the Ph.D. degree in software en-
gineering from Tsinghua University, Beijing, China,
in 2023. He is currently working as a postdoc-
toral fellow with the School of Software, Tsinghua
University, Beijing, China. His research interests
are in the areas of model driven development and
embedded software engineering.

Rui Wang Rui Wang received the B.S. degree in
computer science from Xi’an Jiaotong University,
Xi’an, China, in 2004, and the Ph.D. degree in
computer science from Tsinghua University, Beijing,
China, in 2012. She is currently a professor with the
College of Information Engineering, Capital Normal
University, Beijing, China. Her research interests
include formal verification and their applications in
embedded systems.

Yang Tao is responsible for the software architecture
and key technology innovation of Huawei’s intel-
ligent vehicle solutions, as well as the innovation
and development of Huawei’s intelligent vehicle
operating system. His main research interests are
heterogeneous real-time scheduling, real-time secu-
rity systems, cyber-physical systems, and intelligent
vehicle software architecture.

Yu Jiang received the B.S. degree in software
engineering from Beijing University of Posts and
Telecommunications in 2010, and the PhD degree in
computer science from Tsinghua University in 2015.
He was a Postdoc researcher with the Department of
Computer Science, University of Illinois at Urbana
Champaign, Champaign, IL, USA, in 2016, and is
now an associate professor in Tsinghua University.
His research interests include domain specific mod-
eling, formal computation model, formal verification
and their applications in embedded systems.


